

Training Text

Kenichi Tezuka

JICA (Japan International Cooperation Agency)

Senior Volunteer (ICT)

2015.9

Ver. 1.0

GWI(Guyana Water Inc.)

INDEX

No. Contents Page

1 XAMPP installation and configuration 2H 1

2 PHP basic(1) 2H 12

3 PHP basic(2) 2H 20

4 PHP basic(3) 2H 32

5 PHP basic(4) 2H 38

6 HTML Overview (HTML5, XHTML, Box layout design) 2H 52

7 HTML form & how to guard XSS attacks 4H 58

8 File handling 4H 74

9 Session & Error handling 2H 90

10 MySQL basics & SQL statements 2H 104

11 How to guard from SQL injection attacks 2/4H 128

12 OOP(Object Oriented Programing) basics 2H 141

13 MVC pattern in PHP web applications 2H 151

14 Database Access Class 2H 168

15 Final Exercise 4H 175

1

This training aims for getting knowledge on how to make Web applications by

using PHP as programming language.

First, we’ll get understand how our Web

applications run.

Web server can reside on a server over internet(1) or in LAN(2), or even on your PC(3).

APACHE (Web Server)

PHP program HTML

Database

1. Request from HTML form

2. Transfer request to PHP program

3. Request to get data by SQL 4. Return dataset to PHP program

5. Generate HTML

6. Request to send response(HTML) to sender

7. Return generated HTML to browser

 internet

Web server Client PCs

Local network

Web server

(1)

(2)

(3)

PHP & Web programing (1)

2

XAMPP

What’s XAMPP?

XAMPP is a free and open source cross-platform web server solution stack package

developed by Apache Friends, consisting mainly of the Apache HTTP Server, MySQL

database, and interpreters for scripts written in the PHP and Perl programming languages.

 (by Wikipedia)

XAMPP provides

 Web server -- APACHE

 Programing environment ------------------------ PHP, Perl

 Database --- MySQL

 File transfer protocol (FTP) server ----------- FileZilla

 Mail server --- Mercury Mail

 Web server for JAVA environment ---------- Tomcat

 and so on.

Step 1. XAMPP installation

We have now XAMPP installer named ‘xampp-win32-5.6.11-0-VC11-installer.exe’.

Executing this program, then you’ll see a screen below;

For successful installation, you’d better stop your anti-virus software temporally.

After responding ‘Yes’ to this, you’ll see a screen below;

 Simply press ‘Next’.

https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Cross-platform
https://en.wikipedia.org/wiki/Web_server
https://en.wikipedia.org/wiki/Solution_stack
https://en.wikipedia.org/wiki/Apache_HTTP_Server
https://en.wikipedia.org/wiki/Apache_HTTP_Server
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Interpreter_(computing)
https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Programming_language

3

Next, you’ll see ‘Component selection’ window. Here, you’d better check off ‘Mercury’ and ‘Tomcat’, which

are not necessary now.

Then, next step is to define where(= under which folder) we install XAMPP.

XAMPP recommend not to install XAMPP on top level folder.

You’d better change the default(‘C:\xampp’) to some new folder under other higher level folder.

4

Then you’ll see a screen below. You’d better clear the check, otherwise you’ll see some bothersome

advertisement later.

Finally, we complete preparation for installation. Press ‘Next’, then installation process will start.

5

After installation, check folder where XAMPP resides. And you can see XAMPP controller button on ‘Start

Menu’ for Windows 7. For Windows 8, XAMPP controller button may be on tiles.

XAMPP controller button on Start Menu

6

Step 2. XAMPP configuration

php.ini (PHP configuration xampp/php/php.ini)

php.ini is a text file to configure PHP interpreter.

php.ini resides under ‘php’ folder in xampp.

Which part of php.ini should we modify before starting to use PHP?

 (Example shown below is those of my environment. Drive and folder name should be arranged to

your environment.)

1. Path for error log

2. Path for Add-on tools’ folder

3. Path for Extension (= external library) folder

4. Set Time-zone

 You can get Time zone data in http://php.net/manual/en/timezones.america.php

You’d better copy the target line to be modified
and make one as comment line with date
modified. (Don’t delete original line)
Then you could easily find where you had
modified the original.

http://php.net/manual/en/timezones.america.php

7

5. For debug or test mode, mails from PHP programs should be forwarded to (= saved in) local disk.

6. Environment information for MySQL database

 You can keep them as they are. We can give them later in PHP application programs.

7. Path for file to save Session data

8. Change Session ID if you want.

You can change Session ID, but you need to remember it as you often use it in programs.

8

httpd.conf (Apache configuration xampp/apache/conf/httpd.conf)

httpd.conf is a configuration file for Apache web server.

Httpd.conf resides apache/conf folder under XAMPP folder.

Which part of httpd.conf should we modify before starting to use Apache web server?

 (Example shown below is those of my environment. Drive and folder name should be arranged to

your environment.)

1. ServerRoot Directive

It shows where apache system resides.

In XAMPP, it indicates apache top folder under XAMPP folder.

2. Port to listen

If your PC uses Port:80 for other use, you need to change port for apache web server.

Skype program will use port 80, IIS too. If you run Skype or IIS on your PC, then you need to change port

number for apache.

3. Use /Group for apache(httpd).

If you don’t define ‘daemon’ as User/Group, you need to define User ‘daemon’ and Group ‘daemon’.

In my case, I defined User ‘apache’ and Group ‘apacheUsers’.

Notes : This user and group must have read/write privilege on ‘apache’ folder and all folders under

‘apache’.

9

4. ServerName : We don’t need to change this ServerName, but if you change Port to other than 80, you

need to change port number here.

5. ‘DocumentRoot’ is a folder that is stored on your host's servers and holds most of web files.

Suppose you access to google web site by the URL:http://www.google.com, then you will access

to ‘DocumentRoot’ folder in Google site.

6. From ‘Options’ directives, ‘Indexes’ option must be deleted. With ‘Indexes’ option, if someone access to

your site with some file path and no file matches to it, then apache will return file name list of the folder

to the visitor. This means that you may give all information of the folder, what are the files that resides in

the folder and so on, to hackers.

Other .conf files to be checked if apache can’t start normally.

in apache/conf/extra folder

httpd-autoindex.conf

httpd-dav.conf

httpd-manual.conf

httpd-multilang-errordoc.conf

httpd-xampp.conf

These configuration files have path to some folder in their definition. If XAMPP installation couldn’t

complete normally, some of them couldn’t have been updated normally.

10

my.ini (MySQL configuration xampp/mysql/bin/my.ini)

These configuration shown below are not necessary if XAMPP installation has been completed normally.

If not or if you want modify port number for MySQL or modify MySQL data folder, then follow these steps shown

below.

1. Socket file

2. Folders’ definition

3. If you load data from external CSV file into MySQL table, add lines shown below in my.ini.

4. InnoDB settings

11

Step 3. Start XAMPP from XAMPP control panel

1. After normal installation, you’ll find XAMPP control panel icon on your Start menu(for Windows7).

2. Click XAMPP control panel button, then you’ll see XAMPP control panel on your screen.

3. Start Apache and MySQL.

While development stage, you’d better start Apache and MySQL manually.

In production level, you should set these application in the service and start them automatically when the

Windows starts.

12

PHP basic (1)

1. Basic syntax

A PHP script starts with <?php and ends with ?>

The default file extension for PHP files is ".php".

A PHP file normally contains HTML tags, and some PHP scripting code.

<?php

 // PHP code goes here

?>

[Practice 01] Our first PHP program.

Open a text editor like NotePad.

Write PHP program shown below;

Save this under the ‘DocRoot’ folder. (‘DocRoot’ : See ‘httpd.conf’ and search ‘DocumentRoot’)

Then,

 1. Start ‘Apache’ from XAMPP control panel.

 2. Open a browser.

 3. Access to ‘localhost/ex01.php’

<!DOCTYPE html>

<html>

 <body>

 <?php

 echo "My first PHP script!";

 ?>

 </body>

</html>

PHP & Web programing (2)

13

You’ll see a browser window shown below;

2. Case sensitivity

 Case-sensitive Not Case-sensitive

Key words

Class name

Function name

User-defined function name

Variable name

[Practice 02] Program to check case-sensitivity no.1.

Open a text editor like NotePad.

Write PHP program shown below;

Save this in the same way as Practice01 with name ‘ex02.php’ and access.

<!DOCTYPE html>

<html>

 <body>

 <?php

 echo "My second PHP script!";

 ECHO "My second PHP script!";

 EchO "My second PHP script!";

 ?>

 </body>

</html>

14

3. Comment

[Practice 03] Program to check case-sensitivity no.2.

Open a text editor like NotePad.

Write PHP program shown below;

Save this in the same way as Practice01 with name ‘ex03.php’ and access

to this program.

What comes out on your browser?

<!DOCTYPE html>

<html>

 <body>

 <?php
 $myVar = “12345”;

 echo "My Variable is " . $myVar . “
”;

 echo " My Variable is " . $MYVAR . “
”;

 echo " My Variable is " . $myVAR . “
”;

 ?>

 </body>

</html>

<!DOCTYPE html>

<html>

<body>

<?php

// This is a single-line comment

This is also a single-line comment

/*

This is a multiple-lines comment block

that spans over multiple

lines

*/

// You can also use comments to leave out parts of a code line

$x = 5 /* + 15 */ + 5;

echo $x;

?>

</body>

</html>

15

4. Variables

Variables are "containers" for storing information.

Rules;

 A variable starts with the $ sign, followed by the name of the variable

 A variable name must start with a letter or the underscore character

 A variable name cannot start with a number

 A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9,

and _)

 Variable names are case-sensitive ($age and $AGE are two different variables)

5. Data types

PHP is a loosely typed language, while C, C++, and Java, the programmer must declare the name

and type of the variable before using it.

PHP automatically converts the variable to the correct data type, depending on its value.

[Practice 04] Program to check PHP data types.

Open a text editor like NotePad.

Write PHP program shown below;

Save this in the same way as Practice01 with name ‘ex04.php’ and access

to this program.

What comes out on your browser?

<!DOCTYPE html>

<html>

 <body>

 <?php

 $myVar = "abcdef";

 echo "myVar is " . $myVar . "
";

 $myVar = 1 + 2 + 3;

 echo "myVar is " . $myVar . "
";

 ?>

 </body>

</html>

16

In the first case, $myVar has string data, but in the second, it has integer value.

6. Strings

A string is a series of characters, which means a string is an array of characters.

6-1 Single quoted strings

If characters are enclosed by single quotes, it’s a literal string.

ex)

6-2 Double quoted strings

If characters are enclosed by double quotes,

 1) PHP will interpret escape sequences for special characters

 (See 6-3 Escape sequences)

 2) Variable names will be expanded.

[Practice 05] Double quoted string

Open a text editor like NotePad and write PHP program shown below;

Save it with name ‘ex05.php’ in ‘DOCROOT’ folder and access via browser.

<?php

 echo ‘This is an example of simple string’;

?>

<?php

 $var = ‘apple’;

 echo “My favorite fruites is $var”;

?>

17

6-3 Escape sequences

6-4 Heredoc

<<< : Heredoc operator. After this operator, an identifier and newline are provided.

Then some strings follow.

After finishing strings, at the top of newline, the same identifier comes to show the

end of Heredoc.

Sequence Meaning

\n Linefeed (0x0A)

\r Carriage return (oxoD)

\t Horizontal tab (0x09)

\v Vertical tab

\e Escape (ox1B)

\f Form feed (0x0C)

\\ Backslash

\$ Dollar sign

\” Double-quote

<?php

 $var = <<< EOD

This is a sample of Heredoc.

We can put here some strings.

EOD;

?>

18

6-5 String as an array of characters

String is an array of characters. See an example below;

7. Constant

A constant is an identifier name for a simple value.

The value can’t be changed during the execution.

By naming convention, constant name is always upper cases.

To define constants, ‘define’ function is used, in class ‘const’ keyword is used.

 (See examples shown below)

.

<?php

 $var = “This is a string.”;

 echo “First character of the string is “ . $var[0];

?>

 - This program will display a character ‘T’.

[Practice 06] Define constant

Open a text editor like NotePad and write PHP program shown below;

Save it with name ‘ex06.php’ in ‘DOCROOT’ folder and access via browser.

<?php

 define(“MYCONST”, “This is my constant.”);

 Class MyConst {

 const YOURCONST = “This is your constant.”;

 Public static function getYourConst() {

 return self::YOURCONST;

 }

 }

 echo MYCONST . “
”;

 echo MyConst::getYourConst() . “
”;

?>

19

20

PHP basic (2)

7. Operators

PHP has several kinds of operators;

 Arithmetic operators

 Comparison operators

 Assignment operators

 Increment/Decrement operators

 Logical operators

 String operators

 Array operators

7-1 Arithmetic operators

Operator Name Example Result

+ Addition $x + $y Sum of $x and $y

- Subtraction $x - $y Difference of $x and $y

* Multiplication $x * $y Product of $x and $y

/ Division $x / $y Quotient of $x and $y

% Modulus $x % $y Remainder of $x divided by $y

** Exponentiation $x ** $y Result of raising $x to the $y'th power
(Introduced in PHP 5.6)

PHP & Web programing (3)

[Practice 07] Arithmetic operators

Open a text editor like NotePad and write PHP program shown below;

Save it with name ‘ex07.php’ in ‘DOCROOT’ folder and access via browser.

<?php

 $x = 15, $y = 4;

 echo “x + y = ” . ($x + $y);

 echo “x - y = ” . ($x - $y);

 echo “x * y = ” . $x * $y;

 echo “x / y = ” . $x / $y;

 echo “x % y = ” . $x % $y;

 echo “x ** y = ” . $x ** $y;

?>

21

7-2 Comparison operators

Operator Name Example Result

== Equal $x == $y Returns true if $x is equal to $y

=== Identical $x === $y Returns true if $x is equal to $y, and they
are of the same type

!= Not equal $x != $y Returns true if $x is not equal to $y

<> Not equal $x <> $y Returns true if $x is not equal to $y

!== Not identical $x !== $y Returns true if $x is not equal to $y, or they
are not of the same type

> Greater than $x > $y Returns true if $x is greater than $y

< Less than $x < $y Returns true if $x is less than $y

>= Greater than or
equal to

$x >= $y Returns true if $x is greater than or equal to
$y

<= Less than or equal
to

$x <= $y Returns true if $x is less than or equal to $y

[Practice 08] Comparison operator ===

Open a text editor like NotePad and write PHP program shown below;

Save it with name ‘ex08.php’ in ‘DOCROOT’ folder and access via browser.

<?php

 $x = array(1, 2, 3);

 $y = array(1, 2, 3);

 $z = array(1, 2, 3, 4);

 if($x === $y) {

 echo ‘#x === $y : true
’;

 } else {

 echo ‘#x === $y : false
’;

 }

 if($x === $z) {

 echo ‘#x === $z : true
’;

 } else {

 echo ‘#x === $z : false
’;

 }

?>

22

7-3 Assignment operators

Assignment Same as … description

x = y x = y Left operand gets value of the expression on the right

x += y x = x + y Addition

x -= y x = x - y Subtraction

x *= y x = x * y Multiplication

x /= y x = x / y Division

x %= y x = x % y Modulus

[Practice 09] Assignment operator +=, -=

Open a text editor like NotePad and write PHP program shown below;

Save it with name ‘ex09.php’ in ‘DOCROOT’ folder and access via browser.

<?php

 $x = 10;

 $y = 20;

 echo “x = $x, y = $y
”;

 $x += $y; echo “ x += y x = $x
”;

 echo “x = $x, y = $y
”;

 $x -= $y; echo “ x -= y x = $x”;

?>

23

7-4 Increment/Decrement operators

Operator Name description

++$x Pre-increment Increments $x by one, then returns $x

$x++ Post-increment Returns $x, then increments $x by one

--$x Pre-decrement Decrements $x by one, then returns $x

$x-- Post-decrement Returns $x, then decrements $x by one

[Practice 10] Increment/Decrement operator

Open a text editor like NotePad and write PHP program shown below;

Save it with name ‘ex10.php’ in ‘DOCROOT’ folder and access via browser.

<?php

 $x = 10;

 echo ‘$x, ++$x : ‘ . $x . ‘, ‘ . ++$x . ‘
’;

 $x = 20;

 echo ‘$x, $x++ : ‘ . $x . ‘, ‘ . $x++ . ‘
’;

?>

24

7-5 Logical operators

7-6 String operators

7-7 Array operators

Operator Name Example Result

and And $x and $y True if both $x and $y are true

or Or $x or $y True if either $x or $y is true

xor Xor $x xor $y True if either $x or $y is true, but not
both

&& And $x && $y True if both $x and $y are true

|| Or $x|| $y True if either $x or $y is true

! Not !$x True if $x is not true

Operator Name Example Result

. (dot) Concatenation $x . $y Concatenation of $x and $y

.= Concatenation
assignment

$x .= $y Appends $y to $x

Operator Name Example Result

+ Union $x + $y Union of $x and $y

== Equality $x == $y True if $x and $y have the same
key/value pairs

=== Identity $x === $y True if $x and $y have the same
key/value pairs in the same order and
of the same types

!= Inequality $x != $y True if $x is not equal to $y

<> inequality $x <> $y True if $x is not equal to $y

!== Non-identity $x !== $y True if $x is not identical to $y

25

8. if … else

8-1 if statement

Syntax :

if (condition) {

 code to be executed if condition is true;

}

Example:

8-2 if … else statement

Syntax :

if (condition) {

 code to be executed if condition is true;

} else {

 code to be executed if condition is false;

}

Example:

<?php

 $t = date(‘H’);

 If($t < ‘20’) {

 echo ‘Have a nice day’;

 }

?>

<?php

 $t = date(‘H’);

 If($t < ‘20’) {

 echo ‘Have a nice day’;

 }

?>

<?php

 $t = date(‘H’);

 If($t < ‘20’) {

 echo ‘Have a nice day’;

 } else {

 echo ‘Have a good night’;

 }

?>

26

8-3 if … elseif … else statement

Syntax :

if (condition) {

 code to be executed if condition is true;

} elseif (condition) {

 code to be executed if condition is false;

} else {

 code to be executed if condition is false;

}

Example:

<?php

 $t = date(‘H’);

 If($t < ‘10’) {

 echo ‘Good morning’;

 } elseif ($t < ‘20’){

 echo ‘Have a nice day’;

 } else {

 echo ‘Have a good night’;

 }

?>

27

9. switch Statement

The switch statement is used to perform different actions based on different conditions.

Syntax :

switch (n) {

 case label1:

 code to be executed if n=label1;

 break;

 case label2:

 code to be executed if n=label2;

 break;

 case label3:

 code to be executed if n=label3;

 break;

 ...

 default:

 code to be executed if n is different from all labels;

}

Example:

Attention!

 Don’t forget ‘:’(colon) !

 It’s colon, not semi-colon.

<?php

 $myBirth = “Feb”;

 switch ($myBirth) {

 case ‘Jan’:

 echo ‘Your birthday is in Jan’;

 break;

 case ‘Feb’:

 echo ‘Your birthday is in Feb’;

 break;

 case ‘Mar’:

 echo ‘Your birthday is in Mar’;

 break;

 .

 .

 default’:

 echo ‘When were you born?’;

 }

?>

Attention!

 Don’t forget ‘break’!

28

10. Loop control

10-1 While loop

While loop runs a block of codes while the specified condition is true.

Syntax :

while (condition is true) {

 code to be executed;

}

Example :

10-2 Do … while loop

Do … while loop checks specified conditions after executing a block of codes.

The difference between While loop and Do … while loop is ;

 “Do … while loop will execute block of codes at least once.

 While loop may not execute block of codes in case where the condition

 is true before entering into the loop.”

Syntax :

do {

 code to be executed;

} while (condition is true);

Example :

<?php

 $loopCnt = 1:

 $sum = 0;

 while ($loopCnt <= 100) {

 $sum += $loopCnt++;

 }

 echo “Adding integer from 1 to 100 makes $sum”;

?>

<?php

 $loopCnt = 1:

 $sum = 0;

 do {

 $sum += $loopCnt++;

 } while ($loopCnt <= 100);

 echo “Adding integer from 1 to 100 makes $sum”;

?>

29

10-3 For loop

For loop runs a block of codes while the specified condition is true.

Syntax :

for (init counter; test counter; increment counter) {

 code to be executed;

}

parameters :

 init counter: Initialize the loop counter value

 test counter: Evaluated for each loop iteration.

 If it evaluates to TRUE, the loop continues.

 If it evaluates to FALSE, the loop ends.

 increment counter: Increases the loop counter value

Example :

[Practice 11] While / Do … while loop

Make a program named ‘ex11.php’ which adds all even numbers from 1 to 100 and show the

sum;

Save it with name ‘ex11.php’ in ‘DOCROOT’ folder and access via browser.

<?php

 for ($loopCnt = 1, $sum = 0; $loopCnt <= 100; $loopCnt++) {

 $sum += $loopCnt;

 }

 echo “Adding integer from 1 to 100 makes $sum”;

?>

[Practice 12] For loop

Make a program named ‘ex12.php’ which adds all odd numbers from 1 to 100 using for loop and

show the sum;

Save it with name ‘ex12.php’ in ‘DOCROOT’ folder and access via browser.

30

10-4 Foreach loop

Foreach loop works only on an array or on an object.

Foreach loop assigns value or pair of key&value or object instance to variables.

Syntax :

foreach ($array as $value) {

 code to be executed;

}

foreach ($array as $key => $value) {

 code to be executed;

}

foreach ($object as $instance) {

 code to be executed;

}

Example :

<?php

 $animals = array(“dog”, “cat”, “lion”, “elephant”, “tiger”);

 foreach ($animals as $animal) {

 echo “$animal
”;

 }

?>

<?php

 $animals = array(“dog” => TRUE,

 “cat” => TRUE,

 “lion” => FALSE,

 “elephant” => FALSE,

 “tiger” => FALSE);

 foreach ($animals as $animal => $ableToBePet) {

 if($ableToBePet) {

 echo “$animal can be a pet.
”;

 } else {

 echo “$animal can’t be a pet.
”;

 }

 }

?>

31

[Practice 13] Loop

Make a program named ‘ex13.php’ which has a group of data with a pair of ‘nation name’ and

‘capital city’ such as USA and Washington.

Program will scan the data and show all nation names and capital city.

Save it with name ‘ex13.php’ in ‘DOCROOT’ folder and access via browser.

32

PHP basic (3)

11. functions

11-1 User defined functions

A function is a block of statements that can be used repeatedly in a program.

A function will not execute immediately when a page loads.

A function will be executed by a call to the function.

Syntax :

function functionName(argument1, argument2, …) {

 code to be executed;

}

A function name can start with a letter or underscore (not a number).

Function names are NOT case-sensitive.

Example :

PHP & Web programing (4)

<?php

 function showMessage() {

 echo “Hello World!”;

 }

 showMessage();

?>

<?php

 function showMessage($name, $birthYear) {

 echo “I am $name. I was born in $birthYear.”;

 }

 showMessage(“John Johnson”, 1970);

 showMessage(“Kate Boyle”, 1992);

 showMessage(“Samuel Carter”, 1922);

?>

33

11-2 Default argument value

Arguments of a function can have a default value.

Syntax :

function functionName(argument1 = defaultValue, …) {

}

Example :

11-3 Returning values

Using return statement, a function can return a value.

Example :

<?php

 function setHeight($height = 170) {

 echo “I am $height cm in height.”;

 }

 setHeight(162);

 setHeight(188);

 setHeight(); // use default value

?>

<?php

 function calc($arg1, $arg2) {

 return $arg1 * $arg2;

 }

 echo “12 * 34 = “ . calc(12, 34) .
;

 echo “51 * 213 = “ . calc(51, 213) .
;

 echo “0 * 2345 = “ . calc(0, 2345) .
;

?>

34

12. Arrays

There are three kinds of array;

1) Indexed array

2) Associated array

3) Mutidimensional array

12-1 Indexed array

An array indexed by number stating by 0.

Example :

 $months = array(“Jan”, “Feb”, “Mar”, “Apr”, “May”, “Jun”, “Jul”, “Aug”, “Sep”,

 “Oct”, “Nov”, “Dec”);

In an array shown above,

$months[0] has value ‘Jan’,

$months[10] has value ‘Nov’, and so on

12-2 Associated array

An array indexed by ‘name’.

Example :

$daysInMonth = array(‘Jan’ => 31, ‘Feb’ => 28, ‘Mar’ => 31, …..);

or

$daysInMonth[‘Jan’] = 31; $daysInMonth[‘Feb’] = 28; ….

12-3 Multidimensional array

When a value of an array may have an array, the array is multidimensional.

In 12-1 and 12-2, the array contains value of number of days of each month.

We can define month name and numbers of days in each month in multidimensional array ;

$months = array((‘Jan’, 31), (‘Feb’, 28), (‘Mar’, 31), (‘Apr’, 30), ….

$month[0][0] ‘Jan’, $month[1][1] 28 ….

12-4 Size of array

Size of array means the numbers of elements in a array.

we can get it by ‘count’ function.

 $months = array(“Jan”, “Feb”, “Mar”, “Apr”, “May”, “Jun”, “Jul”, “Aug”, “Sep”,

 “Oct”, “Nov”, “Dec”);

echo count($months); - 12

35

12-5 Loop with array (examples)

With indexed array ;

With associated array ;

<?php

 $months = array(“Jan”, “Feb”, “Mar”, “Apr”,

 “May”, “Jun”, “Jul”, “Aug”,

 “Sep”, “Oct”, “Nov”, “Dec”);

 For($cnt = 0; $cnt < count($months); $cnt++) {

 echo $months[$cnt] . “
”;

 }

?>

<?php

 $months = array(“Jan” =>31, “Feb” => 28, “Mar” => 31,

 “Apr” => 30, “May” => 31, “Jun” => 30,

 “Jul” => 31, “Aug” => 31, “Sep” => 30,

 “Oct” => 31, “Nov” => 30, “Dec” => 31);

 Foreach($months as $name => $maxDay) {

 echo “Max day of $name is $maxDay “
”;

 }

?>

36

13. Superglobals

Superglobals are predefined variables in PHP.

They can be accessed from anywhere in PHP programs.

Examples :

$_SERVER

$_SERVER['PHP_SELF'] : file name of the current script(PHP program)

$_SERVER['SERVER_ADDR'] : the IP address of the host server

$_SERVER['REQUEST_METHOD'] : the request method used to access

 the page (such as POST)

In details, visit URL below;

http://php.net/manual/en/reserved.variables.server.php

Name Explanation

$GLOBALS Array which stores all global variables

$_SERVER Array which holds information about headers, paths, and script
locations.

$_REQUEST Array which collects data from an HTML form

$_POST Array which collects data from an HTML form when the form sent by
‘method=”POST”’

$_GET Array which collects data in the URL from an HTML form when the
form sent by ‘method=”GET”’

$_FILES Array which contains items uploaded to the current script via the

HTTP POST method.

$_ENV Array which holds a list of defined environment variables passed

to the current script

$_COOKIE Array which holds a list passed to the current script via HTTP

Cookies.

$_SESSION Array which hold session variables available to the current script

http://php.net/manual/en/reserved.variables.server.php

37

[Practice 14] Training to find algorithm and express it in PHP program

Make a PHP program to draw a diamond shape on your browser shown below;

 x
 xxx
 xxxxx
 xxxxxxx
 xxxxxxxxx
xxxxxxxxxxx
 xxxxxxxxx
 xxxxxxx
 xxxxx
 xxx
 x

[Practice 15] Training to find algorithm and express it in PHP program

Make more than 2 PHP programs with different algorithm to show 2 digit number from 0 to 99 (from 0 to

9 numbers are shown like 00,01,02,…,09).

You will show numbers shown below;

 00 01 02 03 04 05 06 07 08 09 10 11 12 ….. 98 99 (ascending ordered)

 or

 13 63 28 07 16 …… 55 72 (non-ordered)

38

PHP Basic (4)

14. PHP date & time

14-1 PHP date() function

Syntax

date(format,timestamp)

Format parameter strings

 parameter Description Example

day d Day of the month, 2 digits leading zeros 01 to 31

 D Day of a week in 3 letters Mon to Sun

 j Day of the month, without leading zeros 1 to 31

 l(lower L) Day of a week in full text Monday…

 w Day of a week in numerics 0 for Sunday,…

 z Day of the year (starting from 0) 0 to 365(366)

week W Week number of year 30:30
th

 week of year

month F Month in full text January,…

 m Month in numeric with leading zeros 01,02,…,12

 M Month in short text Jan, Feb,…,Dec

 n Month in numeric without leading zeros 1,2,…,12

 t Number of days in given month 28 to 31

year Y Year in 4 digits 2015

 y Year in 2 digits 15, 00, 99 ….

time a Lower case of AM, PM am, pm

 A Upper case of AM, PM AM, PM

 g Hour:12-hour format without leading zero 1 - 12

 G Hour:24-hour format without leading zero 1 - 24

 h Hour:12-hour format with leading zero 01 - 12

PHP & Web programing (5)

39

Format parameter strings (continued)

Examples;

14-2 mktime() function

Get a UNIX timestamp for a date given in arguments.

Syntax

int mktime ([int $hour = date("H") [, int $minute = date("i") [, int $second =

date("s") [,int $month = date("n") [, int $day = date("j") [, int $year =

date("Y") [, int $is_dst = -1]]]]]]])

 parameter Description Example

 H Hour:24-hour format with leading zero 01 - 24

 i(lower I) Minutes with leading zero 00 - 59

 s Seconds with leading zero 00 - 59

Full c Date in ISO8601 ex) 2015-08-03T09:00:15-02:00

 r Date in RFC2822 ex) Mon,03,Aug 2015 09:00:15-02:00

<?php

 echo “Today is “ . date(“Y-m-d”) . “
”;

 echo “Today is “ . date(“M.d.Y”) . “
”;

 echo “Today is “ . date(“Y-m-d (D)”) . “
”;

 echo “Now it’s “ . date(“Y-m-d H:i:s” . “
”;

?>

Complicated symtax!!

You can neglect it and check examples on next page.

40

Example:

1) Get yesterday;

date(“Y-m-d”, mktime(0,0,0, date(“n”), date(”d”)-1, date(“Y”)));

2) Get last day of this month;

date(“Y-m-d”, mktime(0,0,0, date(“n”)+1, 0, date(“Y”)));

 ‘month’ argument = 0 : the function returns the last day of the last month

 of ‘given month’.

 in the case above, ‘given month’ is ‘date(“n”)+1’ = next month, then

 ‘last month of given month’ means ‘this month’.

3) Get date after 100 days from today

date("Y-m-d", mktime(0,0,0, date("n"), date("d")+100, date("Y")))

14-3 strtotime() function

Get UNIX timestamp by formatted date

Syntax :

int strtotime (string $time [, int $now = time()]);

$now : if supplied, it should be timestamp value of a certain date.

 if not supplied, it will be the timestamp of current date & time.

$time : A date/time string.

 Valid formats are explained in http://php.net/manual/en/datetime.formats.php

Example:

Here you’ll see some examples often used in $time argument;

now timestamp of now

today time stamp if today

tomorrow timestamp of tomorrow

yesterday timestamp of yesterday

+1 day timestamp of tomorrow

+1 week timestamp of the day one week from today

<?php

 echo strtotime(“now”) . “
”;

 - show timestamp value of current time

 echo date(“Y-m-d”, strtotime(“now”)) . “
”;

 - show current date in ‘yyyy-mm-dd’ format

 echo date(“Y-m-d”, strtotime(“+1 day”)) . “
”;

 - show tomorrow in ‘yyyy-mm-dd’ format

?>

<?php

 echo strtotime(“now”) . “
”;

 - show timestamp value of current time

 echo date(“Y-m-d”, strtotime(“now”)) . “
”;

 - show current date in ‘yyyy-mm-dd’ format

 echo date(“Y-m-d”, strtotime(“+1 day”)) . “
”;

 - show tomorrow in ‘yyyy-mm-dd’ format

?>

http://php.net/manual/en/datetime.formats.php

41

+1 month timestamp of the day one month from today

+1 year timestamp of the day one year from today

+1 hour timestamp of one hour later from now

+1 minute timestamp of one minute later from now

+1 second timestamp of one second later from now

 Number value in ‘+1’ can be changed. Minus value is available.

[Practice 16] date/time related functions ex16.php

1) Show date of 5 days after today in ‘yyyy-mm-dd’ format

2) Show the last day of current month in ‘yyyy-mm-dd’ format

3) Show how many days there are between today and the last day of the current month.

42

15. Coding standard & Naming convention

15-1 Coding standard (by PEAR project)

[Indenting & line length]

1) Use an indent of 4 spaces, with no tabs.

2) It is recommended to keep lines at 75 – 85 characters for better readability.

[control structure]

3) Control statements should have one space between keyword and opening braces.

You’d better use curly braces even when they are technically optional.

 or

4) Split long if statements onto several lines.

Logical operators($$, || etc) should be at the beginning of the line

for better readability and to comment easily.

5) When if clause is really long to split, it might be better to simplify.

You could express conditions as variables. See example below;

<?php

 switch (condition) {

 case 1:

 action1;

 break;

 case 2:

 action2;

 break;

 default:

 defaultaction;

 break;

 }

?>

<?php

 if (($condition1 // some comment

 || $condition2) // some comment

 && $condition3 // some comment

 && $condition4

) {

 // code here

 }

?>

<?php

 switch (condition) {

 case 1:

 action1;

 break;

 case 2:

 action2;

 break;

 default:

 defaultaction;

 break;

 }

?>

43

[function calls]

6) Functions should be called with no spaces between the function name, the opening parenthesis,

and the first parameter; spaces between commas and each parameter, and no space between the

last parameter, the closing parenthesis, and the semicolon.

To promote readability, a block of related assignments can be aligned

<?php

 if (($condition1

 || $condition2)

 &&

 ($condition3

 && $condition4)

) {

 // code here

 }

?>

<?php

 $isBlock1 = ($condition1 || $condition2);

 $isBlock2 = ($condition3 && $condition4);

 if ($isBlock1 && $isBlock2) {

 // code here

 }

?>

<?php

 $var = $someFunction($arg1, $arg2, $arg3);

?>

<?php

 $return1 = $function1($arg1, $arg2);

 $longReturn = $function2($arg3);

?>

44

[Class definition]

7) Class definitions have their opening brace on a new line.

<?php

 class SomeClass

 {

 // code here

 }

?>

45

15-2 Naming convention (by PEAR project)

1) Global variables

Names of global variables should start with single underscore followed by the package name and

another underscore.

ex) $_PACKAGE1_some_global_var

2) Global functions

CamelCase(Camel caps) is the practice of writing compound words or phrases such that each word

or abbreviation begins with a capital letter.

In PHP, camel case starts with lower case letter.

In addition, they should have the package name as a prefix.

ex) PACKAGE1_someFunction()

3) Class name

Class name always begin with uppercase and should be given descriptive names.

Class name would better reflect class hierarchy separated with a single underscore.

ex) GWI_DB_Access GWI_Customer

4) Class variables, methods

Class variables and methods should be named using ‘Camel Case’ style.

ex) connect() getRecordByName() $recordCount

5) Private variables, methods

Private variables and methods in Class or in function should be preceded by a single underscore.

ex) _status _sort()

6) Constant

Constants should always be all-uppercase.

ex) DB_CONNECTION_STRINGS HTML_ERROR_404

46

16. Scope of variables

16-1 local and global scope

scope of variables;

 local

 global

 static

A variable declared outside function has global scope.

A variable declared inside function has local scope.

[Practice 17] local and global scope ex17.php

Make a program shown below with name ‘ex17.php’ and execute it.

Check the output and understand how the variable scope works.

<?php

 $x = 10; // variable x has global scope

 function myTest() {

 echo "Variable x inside function is: $x
";

 }

 myTest();

 echo "Variable x outside function is: $x
";

?>

47

In the previous practice, how can we refer to variable x defined outside function

from inside the function myTest?

We need to ‘global declaration’. Sample is shown below;

<?php

 $x = 10; // variable x has global scope

 function myTest() {

 global $x;

 echo "Variable x inside function is: $x
";

 $x *= 2; // try to modify the value of x

 }

 myTest();

 echo "Variable x outside function is: $x
";

?>

48

16-2 static variable

[Practice 18] without static scope ex18.php

Make a program shown below with name ‘ex18.php’ and execute it.

Check the output.

We expect $count will be counted up by 1 each time we call the function muTest, so we expect

incremented number like 1,2,3,4 shown on the browser.

How is the result?

<?php

 function myTest() {

 $count = 0;

 $count++;

 echo "Variable count after count up: $count
";

 }

 myTest();

 myTest();

 myTest();

 myTest();

?>

49

How can we keep the value of $count in the function myTest?

It’s the keyword ‘static’. Let’s modify the ex18.php like this;

Static variable can keep value as it is.

In the ex18.php, from the second time when the function myTest is called,

variable $count is never initialized, will keep the value as it is during the program life. This ivariables.s

the static scope of

<?php

 function myTest() {

 static $count = 0;

 $count++;

 echo "Variable count after count up: $count
";

 }

 myTest();

 myTest();

 myTest();

 myTest();

?>

50

17. include / require statements

In PHP, we can insert PHP programs into another PHP program by using ‘insert’ statement or ‘require’

statement.

Two statement have the same function to insert the contents of an external file into the position where

these statement is written. The difference between the two is ;

 in case of failure of the statement,

 ‘require’ statement will produce fatal error and stop the script

 ‘include’ statement will produce only Warning and continue the script

So, for security reason, we often use ‘require’ statement.

Syntax :

 include ‘file-name’;

 include_once ‘file-name’;

 require ‘file-name’;

 require_once ‘file-name’;

‘include_once’,’require_once’ has the same function as ‘include’,’require’.

PHP will check whether the requested file is already included/required or not,

and if already included/required, then PHP will never include/require again.

Examples above don’t use (and), because both ‘include’ and ‘require’ are not functions but

basic statement in PHP. But it’s accepted(allowed) to use (and)

like examples below;

 include(‘prog1.php’);

 include_once(‘progb,php’);

 require(‘prog1.php’);

 require_once(‘progb,php’);

[Practice 19] example of ‘include’ ex19.php, ex19b,php

Make two programs shown below with name ‘ex19.php’,’ex19b.php’ and

access ‘ex19,php’ from browser.

Check result carefully from the point of ‘variable scope’.

 ex19.php ex19b.php

<?php

 echo “Here is an $color $fruit”;

 include ‘ex19b.php’;

 echo “Here is an $color $fruit”;

?>

<?php

 $color = ‘red’;

 $fruit = ‘strawberry’;

?>

51

 ex19.php ex19b.php

After execution of ‘include’ statement, this program will be like follows;

 Then you can easily find the reason of error message.

<?php

 echo “Here is an $color $fruit”;

 $color = ‘red’;

 $fruit = ‘strawberry’;

 echo “Here is an $color $fruit”;

?>

52

HTML overview

As you know, HTML is a mark-up text for web pages.

HTML syntax rules are somehow loose and browser tools especially IE(Internet Explorer)

accepts, so called, ‘bad-formed’ HTML.

For future use, you’d better follow XHTML syntax rules.

XHTML is HTML redesigned as XML, has syntax rules stricter than HTML.

Some XHTML rules different from HTML

1. XTML DOCTYPE is mandatory.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 //EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml11.dtd">

<!DOCTYPE html>

2. The xmlns(XML name space) attributes in <html> is mandatory

<html xmlns="http://www.w3.org/1999/xhtml">

3. <html>, <head>, <title> and <body> are mandatory

4. XHTML elements must be properly nested.

bad example: <p>This is emphasized letters</p>

 - <p>this is emphasized letters</p>

5. XHTML elements must always be closed,

bad example: <p>New paragraph - <p>New paragraph</p>

 we’ll go to next line.
 - We’ll go to next line.

6. XHTML elements must be in lowercase.

bad example: <P>New paragraph</P> - <p>New paragraph</p>

7. XHTML documents must have one root element.

8. Attribute names must be in lower case.

bad example: -

9. Attribute values must be quoted.

bad example:

10. Attribute minimization is prohibited.

bad example: <input type=”checkbox” …. checked>

 <input type=”checkbox” …. checked=”checked”>

PHP & Web programing (6)

53

HTML files in XHTML have always 3 top lines shown below;

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

First line shows ‘this document follows xml syntax. ‘DOCTYPE’ shows HTML version.

Third line shows ‘this document follows syntaxes defined in the shown name space’.

HTML elements, attributes

HTML document is made up by a set of HTML elements.

HTML element has ;

 open tag

 contents

 end tag (closing tag)

 some elements have only start tag and don’t have contents nor end tag.

Examples :

<p>This is paragraph</p>

 end tag

 contents

 open tag

 open tag

 attribute ‘src’ is attribute name, ‘img=……’ is attribute value

 tag doesn’t have contents nor end tag.

Table layout model & Box layout model

1) Table layout model

To design/layout web page by usingrows and columns of a table.

2) Box layout model

All HTML element can be considered as boxes.

In CSS, the term ‘box model’ is used when talking about design and layout.

3) HTML4 specification said;

“Tables should not be used purely as a means to layout document content,

because this may cause problems when rendering to non-visual media.”

4) HTML5 specification said;

“Tables should not be used as layout aids.”

54

You’d better follow ‘Box layout model’.

In ‘Box layout model’, CSS (Cascade Style Sheet) has an important part, so you’d better

learn CSS syntax and how to use it.

Let’s check GWI web site. How are the web pages in GWI site designed?

We’ll check one of the web pages, ‘GWI corporate profile’ page shown below.

Here’s a list of all tags used in ‘body block’ of ‘GWI corporate profile’ page.

<div>, <a>, , <h1>, , , <table>, <tr>, <td>

<h2>,

Not so many. You need to understand these tags and attributes.

See additional articles ‘Analysis of GWI web page structure’ and HTML source.

Role of HTML & CSS

The role of CSS is to define design and layout details in HTML.

The role of HTML is to keep contents of web page and layout them by CSS support.

Ideally, HTML might have only contents and doesn’t have layout/design factors like

‘wigth’,’length’ and so on, these layout/design factors should be in CSS.

55

Analysis of GWI web page structure (Corporate Profile page)

Shapes enclosed by straight line are blocks defined by ‘DIV’.

Shapes enclosed by dotted line are defined by ‘TABLE’.

We can describe this web-page ;

Blocks in top level are designed by ‘BOX laout’., ‘header-block’ and ‘bofy-block’.

But in ‘body-block’, the main structure is designed in ‘TABLE layout’. Why???

Through structure analysis below, isn’t it possible to layout 3 boxes, ‘sidebar-left’, ‘main’ and ‘footer’

in ‘BOX layout’ without outer ‘TABLE layout’?

 Boxes with dotted rectangle are designed by Table Layout.

header-block (2 – 29)

body-block (32 – 116)

site-name (16 – 18)

primary-menu (19 – 27)

Footer (107 – 113)

Main (75 – 104) sidebar-left

(36 – 73)

block-block-0

(37 – 52)

block-menu-

2

(53 – 64)

block-user-1

(65 – 72)

Breadcrumb (76 – 77)

Content(79 – 103)

4 linked button

56

<body>
 <div id="header-block">

 <!-- water conservation knowledge base-->

 <!-- water distribution operations -->

 <!-- customer service; application, connection, billing,.. -->

 <!-- water resource and treatment -->

 <div id="site-name">
 <h1>Guyana Water Incorporated</h1>
 </div>
 <div id="primary-menu">
 <ul class="menu"><li class="first menu-1-1-2">Newsroom | Public Education
 <li class="menu-1-2-2-active">Corporate Profile
 <li class="menu-1-3-2">Customer Services
 <li class="menu-1-4-2">Partnering for Progress
 <li class="last menu-1-5-2">Vacancies & Invitations for Bids

 <!-- -->
 </div>

 </div><!--header-block-->

 <div id="body-block">
 <table cellpadding="0" cellspacing="0">
 <tr>
 <td valign="top" width="180">
 <div id="sidebar-left" class="sidebar">
 <div id="block-book-0" class="clear-block block block-book">
 <h2>Corporate Profile</h2>

57

 <div class="content">
 <ul class="menu">
 <li class="leaf">Annual Report
 <li class="leaf">Corporate Profile
 <li class="leaf">Customer Services Call Centre
 <li class="leaf">Divisional Contact Numbers
 <li class="leaf">History of GWI
 <li class="leaf">Legislation
 <li class="leaf">Locations
 <li class="leaf">Related Links
 <li class="leaf">Staff Directory

 </div>
 </div>
 <div id="block-menu-2" class="clear-block block block-menu">
 <h2>Primary links</h2>
 <div class="content">
 <ul class="menu">
 <li class="collapsed">Newsroom | Public Education
 <li class="leaf">Corporate Profile
 <li class="leaf">Customer Services
 <li class="leaf">Partnering for Progress
 <li class="leaf">Vacancies & Invitations for Bids

 </div>
 </div>
 <div id="block-user-1" class="clear-block block block-user">
 <h2>Navigation</h2>
 <div class="content">
 <ul class="menu">
 <li class="leaf">Useful Information

 </div>
 </div>
 </div>
 </td>
 <td valign="top" id="main">
 <div class="breadcrumb">Home

58

 </div>
 <h2 class="title">Corporate Profile</h2>
 <div id="content">
 <div id="node-20" class="node">
 <div class="content">
 <div class="book-navigation">
 <ul class="menu">
 <li class="leaf">Annual Report
 <li class="leaf">Corporate Profile
 <li class="leaf">Customer Services Call Centre
 <li class="leaf">Divisional Contact Numbers
 <li class="leaf">History of GWI
 <li class="leaf">Legislation
 <li class="leaf">Locations
 <li class="leaf">Related Links
 <li class="leaf">Staff Directory

 <div class="page-links clear-block">Annual Report ›
 </div>
 </div>
 </div>
 <div class="clear-block clear">
 <div class="meta">
 </div>
 </div>
 </div>
 </content>
 </td>
 </tr>
 <tr>
 <td colspan="3" id="footer">
 Corporate Complex Vllissengen Road and Church Street, BelAirPark, Georgetown, Guyana

 Customer Services Call Centre (592) 227 8701 | Fax: (592) 227 8718 | Email: customercallcentre@gwi.gy

 © 2013
 </td>
 </tr>

59

 </table>
 </div><!--body-block-->
</body>

60

HTML form

HTML form is used to collect user input data from a web page.

Let’s make one very simple page with form and one very simple response page.

PHP & Web programing (7)

[Practice 20] HTML form ex20.php, ex20b,php

Make two programs shown below with name ‘ex20.php’,’ex20b.php’ and

access ‘ex20,php’ from browser.

input some letters in the input box and press submit button,

 ex20.php

 ex20b.php

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Practice 20 : HTML form </title>

</head>

<body>

 <p>Practice for handling HTML form</p>

 <form action="ex20b.php" method="POST">

 please key-in some letters : <input type="text" name="inputField" />

 <input type="submit" name="submit" />

 </form>

</body>

</html>

?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Practice 20 : HTML form (response)</title>

</head>

<body>

 <p>Practice for handling HTML form (response to ex20.php)</p>

 You typed in and sent "<?php echo $_POST["inputField"]; ?> "

</body>

</html>

61

Program analysis (ex20.php)

1 – 3 3 top lines of set expression

4 – 6 HEAD tag

5 TITLE tag

7 – 13 BODY tag

8 P tag

9 - 12 FORM tag

 ‘action’ : program/document to be called

 ‘method’ : POST or GET

1 <?xml version="1.0" encoding="utf-8"?>

2 <!DOCTYPE html>

3 <html xmlns="http://www.w3.org/1999/xhtml">

4 <head>

5 <title>Practice 20 : HTML form </title>

6 </head>

7 <body>

8 <p>Practice for handling HTML form</p>

9 <form action="ex20b.php" method="POST">

10 please key-in some letters : <input type="text" name="inputField" />

11 <input type="submit" name="submit" />

12 </form>

13 </body>

14 </html>

62

10 INPUT tag

 ‘type’ : ‘text’ will show a text box

 ‘name’ : name of text box

 This name may be used in

 next PHP program.

11 INPUT tag

 ‘type’ : ‘submit’ will show a button

 ‘name’ : name of button

Program analysis (ex20b.php)

Line 9: $_POST : one of super globals.

It ‘s an associative array of variables passes to the current script

via HTTP POST method.

‘echo’ statement of this line will show the value of “inputField”

in ‘$_POST’, “inputField” in ‘$_POST’ has the value of what you

have input into the field in the previous screen ‘ex20.php’.

1 <?xml version="1.0" encoding="utf-8"?>

2 <!DOCTYPE html>

3 <html xmlns="http://www.w3.org/1999/xhtml">

4 <head>

5 <title>Practice 20 : HTML form (response)</title>

6 </head>

7 <body>

8 <p>Practice for handling HTML form (response to ex20.php)</p>

9 You typed in and sent "<?php echo $_POST["inputField"]; ?> "

10 </body>

11 </html>

63

GET and POST

In the form defined in ‘ex20.php’, you see ‘POST’ ‘method’ attribute.

What’s POST? And what’s GET? What are the differences?

There are two types of how a browser can send data to a web server.

GET method and POST method.

GET method will send the data from a form appended to the page request (URL

strings). The page request and the data is separated by ‘?’.

 ex : if you send data in ‘ex20.php’ using GET method, you will see the

 window shown below:

page request (URL strings) with data in GET method

Changes in source files : ex20.php

ex20b.php

(Lines from 1 t0 8, they are the same as that for POST method)

9 <form action="ex20b.php" method="GET">

10 please key-in some letters : <input type="text" name="inputField" />

11 <input type="submit" name="submit" />

…….

(Lines from 1 t0 8, they are the same as that for POST method)

9 You typed in and sent "<?php echo $_GET["inputField"]; ?> "

10 </body>

11 </html>

64

Using GET method, all data given in the form may be shown in URL strings.

It sometime causes security problem. Password given in the form can be seen in

URL strings.

So, in most of Web applications, we use POST method.

In POST method, data in the form are given in $_POST and not shown in URL strings.

Here you may do one practice where you will see how dangerous to use GET

method.

[Practice 21]

Make a program shown below with name ‘ex21.php’ and ‘ex21b.php’.

‘ex21.php’ will show one form to input ID and password. (For password field,

‘type’ attribute is defined as ‘password’, which hide data in the field.)

‘ex21b.php’ will show ID and password you have given and sent. (Usually, the password must not be

shown, this is an example)

 ex21.php

 ex21b.php

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Practice 21 GET & POST</title>

</head>

<body>

 <p>Practice for GET & POST</p>

 <form action="ex21b.php" method="GET">

 please key-in your ID : <input type="text" name="yourID" />

 please key-in your password : <input type="password" name="yourPSWD" />

 <input type="submit" name="submit" />

 </form>

</body>

</html>

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Practice 21 : HTML form (response)</title>

</head>

<body>

 <p>Practice for handling HTML form (response to ex21.php)</p>

 You typed in and sent "<?php echo $_GET["yourID"]; ?> "

 Your password is : "<?php echo $_GET["yourPSWD"]; ?> "

</body>

</html>

65

You will see screens shown below;

Page request (URL strings) shows your password in plain text!

You may understand how dangerous it is to send sensitive data from a HTML form with GET

method.

66

input elements

1. Text input

2. Radio button input

3. Submit button

select element (drop-down list)

textarea element

button element

datalist element (new element in HTML5)

keygen element (new element in HTML5)

In details, see

 http://www.w3schools.com/html/html_form_elements.asp

http://www.w3schools.com/html/html_form_elements.asp

67

XSS (Cross Site Scripting) vulnerability

What’s XSS attacks?

XSS attacks are type of injection, where malicious scripts are injected into

a web page.

We’ll try some example of XSS attack here:

 Notes: Some browser like Google Chrome has anti-XSS filter itself.

As for Chrome, to disable this filter, you can start Chrome from command prompt with the

argument shown below;

 chrome.exe –disable-xss-auditor

 (two hyphens + ‘disable-xss-auditor’)

[Practice 22] XSS attack example

Make a program shown below with name ‘ex22.php’ and ‘ex22b.php’.

 ex22.php

 ex22b.php

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Practice 22 GET & POST</title>

</head>

<body>

 <p>Practice for GET & POST</p>

 <form action="ex22b.php" method="POST">

 please key-in your ID : <input type="text" name="yourID" />

 <input type="submit" name="submit" />

 </form>

</body>

</html>

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Practice 22: HTML form (response)</title>

</head>

<body>

 <p>Practice for handling HTML form (response to ex21.php)</p>

 You typed in and sent "<?php echo $_POST["yourID"]; ?> "

</body>

</html>

68

Here is an example for XSS attack which is only showing one alert window

on the browser.

After accessing to ‘localhost/ex22.php’, type in following letters into input box.

 “><script>alert(‘XSS successful!!!’);</script><!--
What comes out on your browser?

An alert window, which is not defined in ‘ex22b,php’, is shown

on your browser.

In actual cases, attackers will show some malicious HTML with some buttons which might lead you

to some malicious site.

This is a very simple example of XSS attack.

Don’t do it on internet Web pages, it may result in committing a crime.

But you must check Web pages in GWI site before it might be taken over

by hackers.

(If you use Google Chrome, it has anti XSS filter as default. To bypass this filter on Chrome,

 you can open Chrome from the command prompt window as follows;)

 >cd c:/program files (x86)/Google/Chrome/Application

 >chrome --args --disable-xss-auditor

69

How to guard your web page from XSS attacks

General concept: validation for input data, sanitizing output data

1. Input validation & sanitizing

First step to prevent XSS attacks is ‘Input Validation’.

For example;

 Input fields for mail address must only have valid letters for mail address.

 Input fields for height must only numerics, comma or period.

In PHP, we have one function shown below:

 filter_var() function

 see http://php.net/manual/en/function.filter-var.php

 ex) $ip =”http://www.gwi.gy”;

 if(! filter_var($ip, FILTER_VALIDATE_URL) === false) {

 // some codes in case of valid URL

 }

Sanitizing : to convert/remove illegal letters in input data

 see http://php.net/manual/en/filter.filters.sanitize.php

 ex) $ip = “http://www.gwi+%#.gy”;

 $url = filter_var($ip, FILTER_SANITIZE_URL);

[Practice 23] Validation check by using filter_var()

Make a program shown below with name ‘ex23.php’ and ‘ex23b.php’.

 ex23.php

Try to input illegal characters(% # ! and so on).

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Practice 23 Validation check</title>

</head>

<body>

 <p>Practice for validation check</p>

 <form action="ex23b.php" method="POST">

 please key-in your email address : <input type="text" name="yourEmail" />

 <input type="submit" name="submit" />

 </form>

</body>

</html>

http://php.net/manual/en/function.filter-var.php
http://php.net/manual/en/filter.filters.sanitize.php

70

valid case

invalid case

[Practice 23] (continued)

 ex23b.php

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head><title>Practice 23 : Validation check</title></head>

<body>

 <p>Practice for validation check (response to ex23.php)</p>

 <? php

 $email = filter_var($_POST[“yourEmail”], FILTER_SANITIZE_EMAIL); // sanitizing

 if (($email == ($_POST[“yourEmail”]))

 &&

 (! filter_var($email, FILTER_VALIDATE_EMAIL) === false)

) { // validating

 echo “Valid email address : $email
”;

 } else {

 echo “Invalid email address : “ . htmlspecialchars($_POST[“yourEmail”]) . “
”;

 }

 ?>

</body>

</html>

71

2. Escaping

You may have got an error message on your browser.

What did PHP tell you in the error message?

syntax error, unexpected 's' (T_STRING)

It means “an apostrophe after ‘mother’ is recognized as closing apostrophe, where

“my mother” may make a text block, and after one text block, PHP expects

a dot(.) or a semicolon(;), but PHP found letter ‘s’ instead.

We need to let PHP recognize this apostrophe after ‘mother’ as a letter, not as a closing sign of a

text block. For this purpose, we need ‘Escaping mechanism’ in PHP.

Back slash(\) is used for this purpose.

Modify line 9 as shown below;

Try to access ex24.php again.

[Practice 24] escaping in PHP

Make a program shown below with name ‘ex24.php’ and access to it on browser

 ex24.php

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Practice 24 Escaping in PHP</title>

</head>

<body>

 <p>Practice for escaping in PHP</p>

 <?php $var = ‘my mother’s book’;

 print $var;

 ?>

</body>

</html>

 <?php $var = ‘my mother\’s book’;

72

3. htmlspecialchars() function

htmlspecialchars() function converts some predefined characters to HTML entities.

Predefined characters and their HTML entities;

 explanation HTML entities

& ampersand &

“ double quote "

‘ single quote '

< less than <

> greater than >

Syntax

htmlspecialchars(string, flag, character-set, double-encode)

string : target string to convert

flag : specifies how to handle quotes, invalid encoding and so on.

 See in details in

 http://php.net/manual/en/function.htmlspecialchars.php

character-set ; default value depends on default_charset in php.ini

double-encode : true : encode existing html entities (default)

 false : not encode existing html entities

XSS attacks generally plant some harmful java scripts into web sites by using non-guarded HTML

definition, and in most cases, they send tags which include ‘<’ , ‘>’ or quotes, so it’s basically important

to convert these harmful characters into HTML entities when responding HTML code to browser.

htmlspecialchars() should be used for output data on HTML just before sending response to browser.

http://php.net/manual/en/function.htmlspecialchars.php

73

[Practice 25] htmlspecialchars()

Make a program shown below with name ‘ex25.php’, ‘ex25b.php’ and key-in including special

characters ‘<’,’>’,’&’ and quotes.

 ex25.php

ex25b.php

After getting response on your browser, you can check HTML source to confirm how

htmlspecialchars() works, how HTML entities are used.

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Practice 25 Sanitizing by htmlspecialchars()</title>

</head>

<body>

 <form action="ex25b.php" method="POST">

 please key-in some letters : <input type="text" name="yourInput" />

 <input type="submit" name="submit" />

 </form>

</body>

</html>

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Practice 25:Using htmlspecialchars() (response)</title>

</head>

<body>

 <p>Practice for Using htmlspecialchars() (response to ex25.php)</p>

 You typed in and sent "<?php echo htmlspecialchars($_POST["yourInput"]); ?> "

</body>

</html>

74

PHP file handling

When we need to handle files, file handling functions will help us.

There are so many functions. We’ll select some functions assuming 5 cases shown below;

1. We read whole contents in a file into some variable and process them.

2. We read a file line-by-line.

3. We create a file, update a file.

4. We read INI format file.

Using INI format, we’ll set up application environment.

5. We upload some images to the web server.

1. Reading whole contents

1-1 file() : This function reads whole of a file into an array.

Each array element has a line from the file.

New line code will still in the element.

[Practice 26] File handling (1) file() function

Make one text file named ‘nations.txt’ with data shown below;

United States,Washington.D.C,311630000

Mexico,Mexico City,112322767

Canada,Ottawa,33573000

Dominica,Roseau,67000

Trinidad and Tobago,Port of Spain,1339000

Brasil,Brasilia,202714700

Urguay,Montevideo,3477780

Peru,Lima,29132000

 ex26.php

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Practice 26 : file handling(1) file() </title>

</head>

<body>

 <p>Practice for file handling (1) file()</p>

 <?php print_r(file(‘nations.txt’)); ?>

</body>

</html>

PHP & Web programing (8)

75

You may see such a list shown above, in spite that file() function keeps

newline in result array. Why?

It’s because browser will neglect newline(x0A0D) code.

When we want to put newline in the list on browser, we must follow HTML

manner, which is
 HTML tag, or we print out the list not through browser, but through another

media like a prompt window.

ex26.php executed on a prompt

window screen

1-2 fopen() – fread() – fclose()

fopen() function will open a file.

fread() function wll get whole contents of the file.

fclose() function will close the file.

fopen()

syntax :

file_handle = fopen(file_path, mode) [or die(message)];

 mode : See a table on next page. optional

76

Mode definition for fopen()

ex) fopen(‘text.txt’, ‘a+’);

If a file ‘text.txt’ exists in current folder,

 open ‘text.txt’ and set file pointer at the end of file to add

 data,

else if it doesn’t exist,

 create ‘text.txt’ in current folder and set file pointer at the

 beginning.

ex) fopen(‘test.jpg’, ‘rb’) or die(“Couldn’t open test.jpg”);

Open a jpeg file in binary mode. If failed, program will stop

 with the message given in ‘die’ option.

fclose()

syntax :

fclose(file_handle);

ex) $fileHandle = fopen(‘example.txt’, ‘r’);

fclose ($fileHandle);

mode description file pointer

r Open a file for read only. at the beginning

w Open a file for write only. Erase the contents if
the file exists.

at the beginning

a Open a file for write only. Existing data is
preserved. If the file doesn’t exist, new file will be
created.

at the end

x Open a file for write only. If the file already
exists, it will fail.

at the beginning

r+ Open a file for read/write. at the beginning

w+ Open a file for read/write. Erase the contents if
the file exists.

at the beginning

a+ Open a file for read/write. Existing data is
preserved. If the file doesn’t exist, new file will be
created.

at the end

x+ Open a file for read/write. If the file already
exists, it will fail.

at the begining

b Open binary file

77

fread() (this function is more suitable for processing binary files) syntax :

 fread(file_handle, length);

 length : maximum number of bytes to be read

 Note: fread() will read maximum 8 KB at one time.

 To read a file with more than 8KB, we need to repeat to

 read.

ex)

 $filename = ‘img/xampp.ico’;

 $filehandle = fopen($filename, ‘rb’); // open binary file

 $contents = fread($filehandle, filesize($filename));

 read a file ‘xampp.ico’ in icon format from ‘img’ folder

 in binary mode

2. Reading file line-by-line

For text files, it’s often better to process line-by-line.

For such cases, fgets() function is used, and process is shown below;

In PHP functions,

Start

Open file

EOF?

End

Read 1 line close file

Start

fopen()

feof()?

End

fgets() fclose()

yes

no

yes

no

78

2-1 feof() returns true if file pointer reaches end of file.

syntax :

$boolean = feof(file_handle);

2-2 fgets() get one line from text file

Syntax :

$string/$boolean = fgets(file_handle, length);

file_handle : required

 file handle assigned to the file when opening the file

length : optional

 if omitted, one line text or text up to EOF.

 Default size is 1024 bytes.

3. Creating a file, updating a file

fopen() gives ‘w’ or ‘x’ option to create a file.

After creating a new file, fwrite() function will write to the file.

For update a file, we need to read whole lines from the file, modify target

lines to be updated and make a new file with whole lines again.

3-1 fwrite()

fwrite() is a function to write some data to file.

Syntax :

fwrite(file_handle, data);

[Practice 27] File handling (2) fopen()/fgets()/fclose()

Using ‘nations.txt’ (see Practice26), make a program named ‘ex27.php’ which process the text file

line-by-line and show the content on a browser.

79

4. INI format

INI file format is a simple text file to use as a configuration for some software.

It is composed of ‘sections’, ‘properties’ and ‘values’.

Syntax :

[section_name]

; comments

property_name = property_value

Here’s one example, php.ini (PHP configuration file);

 example shown above is a MySQL part of php.ini.

[Practice 28] File handling (3) add some records in a file

Using ‘nations.txt’, make a program named ‘ex28.txt’ to meet a request shown below;

add a line(record) ‘Guyana,Georgetown,780000’

[Practice 29] File handling (4) modify some records in a file

Using ‘nations.txt’, make a program named ‘ex29.txt’ to meet a request shown below;

Modify a line(record) ‘Dominica,Roseau,67000’

 to ‘Dominican Republic,Santo Domingo,10090000’

After modification, show nations list on your browser.

80

4-1 parse_ini_file()

parse_ini_file() reads ini format file into array.

Syntax :

parse_ini_file(file_path, process_section)

file_path : path to ini file

process_section : true or false. If true, sections are included in array.

 If false, setions are not included. Default is false.

ex) here’s a part of php.ini ;

Parse_ini_file(‘php.ini’, true) will make an array shown below;

Array {

 [MySQL] => Array {

 [mysql.allow_local_inifile] => On

 [mysql.allow_persistant] => On

 [mysql.cache_size] => 2000

 [mysql.max?persistant] => -1

 [mysql.default_port] => 3306

 [mysql. default_socket] => MySQL

 } ……

 [MySQLi] => Array {

 [mysql.max?persistant] => -1

 [mysql.allow_local_inifile] => On

 [mysql.allow_persistant] => On

 [mysql.max_links] => -1

 [mysql.cache_size] => 2000

 …….

 }

}

81

Parse_ini_file(‘php.ini’, false) will make an array shown below;

Array {

 [mysql.allow_local_inifile] => On

 [mysql.allow_persistant] => On

 [mysql.cache_size] => 2000

 [mysql.max?persistant] => -1

 [mysql.default_port] => 3306

 [mysql. default_socket] => MySQL

 …….

 [mysql.max?persistant] => -1

 [mysql.allow_local_inifile] => On

 [mysql.allow_persistant] => On

 [mysql.max_links] => -1

 [mysql.cache_size] => 2000

 …….

}

As you see, as for parse_ini_file(…., false) may cause some problem with

same property names in different sections.

ex) here’s one example I’ve made for one organization ;

[db] section has environment values for MS SQL Server.

[db_MySQL] section has environment values for MySQL.

[tables] section has table names for both Database.

[Practice 30] File handling (5) use of INI format file

What are advantages to define and use such INI format file shown above in an application

system? Discuss it with each other.

82

5. Upload files to web server

There are 3 points to check for uploading files to web server.

1) Upload configuration defined in php.ini

2) Definition of a form to select target files

3) PHP process to receive target files on the server

5-1 Configuration in php.ini

In php.ini, there’s a definition for uploading files configuration shown below;

1) “file_uploads” property : it’s value should be ‘on’

2) “upload_tmp_dir” property ; it indicates temporary folder.

 Usually we use ‘tmp’ folder under ‘xampp’.

5-2 Form to select target files

Sample :

[Practice 31] Upload files (1) form to select target

Make a program shown below with name ‘ex31.php’

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Upload file(s) to web server</title>

</head>

<body>

 <form action="ex31b.php" method="post" enctype="multipart/form-data">

 Select file(image) to upload:

 <input type="file" name="targetFile" />

 <input type="submit" value="Upload file" name="submit" />

 </form>

</body>

</html>

83

When you access to this program, you’ll see a screen shown below;

In “ex31.php”, these parts with red under line shown above are new factors.

“enctype” attribute and ‘type=”file”’ attribute value.

“enctype” attribute :

When we upload files to web server, this ‘enctype’ attribute must have value ‘multipart/form-

data’ and ‘method’ must be ‘post’.

“type” attribute :

To upload files, ‘input’ attribute value for files must be ‘file’.

“input=’type’” attribute will show a button and some message.

 (see screen shot shown above)

Pushing ‘Choose File’ button will pop up ‘File Select control’ and you can

select files to upload.

After you selected a file to upload, you’ll see the file name on the screen.

 <form action="ex31b.php" method="post" enctype="multipart/form-data">

 <input type="file" name="targetFile" />

84

5-3 Receiving target file(s) on the server

Last point to check for uploading files is the process after pressing the ‘submit’ button on the

screen in Practice 31.

As you see in ‘php31.php’, it’s a process in ‘php31b.php’.

Notes on above source :

“uploads/” : it means ‘relative folder from ‘DocRoot’ (= ‘<xamppRoot>/htdocs/uploads’, if you

don’t change ‘DocRoot’ in ‘httpd.cong’.

After you select file(s) in ‘File Select control’ and press ‘submit’ in ‘Practice 31’, all information of

target file are set in global variable ‘$_FILE’.

“targetFile” is the attribute value of ‘name’ attribute. (See ex31.php)

$_FILE[“targetFile”][“name”] will have file name of the target file(s).

[Practice 32] Upload files (2) uploading files

Make a program shown below with name ‘ex31b.php’

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Upload file(s) to web server</title>

</head>

<body>

<?php

$target_dir = "uploads/";

$target_file = $target_dir . basename($_FILES["targetFile"]["name"]);

if(isset($_POST["submit"])) {

 if (move_uploaded_file($_FILES["targetFile"]["tmp_name"], $target_file)) {

 echo "The file ". basename($_FILES["targetFile"]["name"]). " has been uploaded.
";

 } else {

 echo "Sorry, there was an error uploading your file.
";

 }

}

?>

</body>

</html>

$target_dir = "uploads/";

$_FILES["targetFile"]["name"]

85

basename() is a function to get file name without folder path.

basename(“c:/folderA/folder/fileC.exe”) will return “fileC.exe”.

$_POST keeps all data submitted from HTML form.

If ‘submit’ button was pressed, then the name and value of the button will be set in $_POST as an

array such as “submit” => “Upload”. (See ex31.php)

So, in this case, $_POST[“submit”] has value “Upload” (means ‘not false’).

Mechanism to upload file(s) from client PC to web server is ;

 1) Select target file(s) on client PC

 2) Send target file(s) to temporary folder

 3) From temporary folder, copy the file to target folder

In the process 2), target file(s) will be named with some special names, which we can access with

the name $_FILES[“<name_attribute>”][“tmo_name”]

We don’t need to know where the temporary folder is. PHP knows it.

We don’t need to know what’s the temporary file name of the target file(s). PHP knows it.

move_uploaded_file(temporary_file_name, target_file_path)

This function will move target file(s) in temporary folder to the target folder with specified

name.

If this function return true, target file(s) has been successfully uploaded.

isset($_POST["submit"])

move_uploaded_file($_FILES["targetFile"]["tmp_name"], $target_file)

basename

[Practice 33] Upload files (3) uploading files

Using ‘ex31.php’ and ‘ex31b.php’, upload some file on your PC to your ‘xampp’ web server.

Don’t forget to make ‘uploads’ folder under ‘xampp/htdocs’ folder.

86

In these practices of this chapter, we don’t care anything about target files.

How can we solve such request shown below?

 1) Client wants multiple(more than one) files to upload at one time.

 2) Client (or you can say a hacker) tries fake upload.

 (with fake extension, with too big size and so on)

 3) Client doesn’t want overwrite files if they already exist.

 4) Client want to search only image files with extension .jpg, .jpeg, .gif,

 .png, doesn’t want to include text files and other types in the list.

5-4 additional checks before upload

1) multiple upload

 ex31.php

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Upload file(s) to web server</title>

</head>

<body>

 <form action="ex31b.php" method="post" enctype="multipart/form-data">

 Select file(image) to upload:

 <input type="file" name="targetFile[]" multiple=”multiple” />

 <input type="submit" value="Upload file" name="submit" />

 </form>

</body>

</html>

[Practice 34] Upload files (4) uploading multiple files

Modify ‘ex31.php’ and ‘ex31b.php’ to upload multiple files on your PC to your ‘xampp’ web

server.

87

2) check extension to prevent faked file injection

 ex31b.php

getimagesize(file_path)is a function to check image file (.jpg, .jpeg, .png. .gif and so on).

This function return an array with image’s information (width, height, type and so on) if target file is

an image type file, and return FALSE if not.

…..

<body>

<?php

$target_dir = "uploads/";

$target_file = $target_dir . basename($_FILES["targetFile"]["name"]);

if(isset($_POST["submit"])) {

 $typeImage = getimagesize($_FILES["targetFile"]["tmp_name"]);

 if($typeImage) {

 if (move_uploaded_file($_FILES["targetFile"]["tmp_name"], $target_file)) {

 echo "The file ". basename($_FILES["targetFile"]["name"]). " has been uploaded.
";

 } else {

 echo "Sorry, there was an error uploading your file.
";

 }

 } else {

 echo "Sorry, this file is not image tyoe,
";

 }

}

?>

…….

getimagesize

88

In the example above, a file ‘someimage.jpg’ is a text file.

It was rejected to upload because ‘getimagesize’ function returned FALSE.

‘$_FILES[<faile_name_tag>][“type”] indicates that this file is ‘image/jpeg’ because it checks

only the extension of the file name.

Don’t trust $_FILES[<faile_name_tag>][“type”]. It can be faked.

Remember “Extension of a file can be changed into any extension name”.

3) prevent to overwrite existing files

file_exists() is a function to check whether specified file or folder exists or not.

Syntax :

file_exists($name)

$name : path to the file or the folder

return value : true if the file or the folder exists

 false if the file or the folder doesn’t exists

4) search files limited by file types

when we puch ‘Choose file’ button, ‘File Select control’ will be shown.

If you want to list only limited file types (ex. only image files), how can you do it?

You can add some options to ‘input’ tag shown below;

Example shown above is a case to list only image type files(.jpg etc).

“accept” attribute has syntax below;

You can give extension’s list like this;

 <input …… accept=”.html, .htm” … />

 This will list only files with extension “html”,”htm”.

if(file_exists($target_file)) {

 // some codes in case where the target file already exists

}

file_exists()

 <input type=”file” name=”targetFile” accept=”image/*” />

 <input accept=”file_extension|image/*|audio/*|video/*|media_type” />

89

[Practice 35] Upload files (5) to prevent to upload faked file

1) Make a text file with some text and modify extension to ‘jpg’ manually

2) Using ‘ex31.php’, upload the file to your web server.

3) Confirm that you can upload a text file with extension ‘.jpg’.

4) Delete uploaded this text file from your web server.

5) Add codes to prevent to upload faked file type by using ‘getimagesize()’ function.

6) Confirm that you can’t upload the file.

[Practice 36] Upload files (6) to prevent to overwrite file

1) Make a text file with some text on your PC

2) Using ‘ex31.php’, upload the file to your web server.

3) Modify the contents of the text file on your PC

4) Again using ‘ex31.php’, upload the modified file to your web server.

5) Confirm that a file with same name is uploaded and overwritten

without any caution. This is default.

6) Add code to prevent to overwrite by using ‘file_exists()’ function.

7) Confirm that you can prevent to overwrite a file with same name.

90

PHP session

Sometime it is said that “Web application is stateless one”.

What does it mean? What’s the meaning of the word ‘stateless’?

1) Stateful and stateless

Stateful protocol keeps data between connection.

Stateless protocol doesn’t.

HTTP protocol is one of stateless protocol.

Our web applications run with HTTP protocol, so we can’t keep data.

What does it mean?

Suppose one case shown below;

PHP & Web programing (9)

internet

My name is XXXX.

OK! I’ve got your name.

Do you know my name?.

Your name?????
user

server

In the picture shown above, communication between ‘user’ and ‘server’ will show you what

the stateless protocol is.

In the stateless protocol, data can be kept only in a transaction, and a transaction in HTTP

protocol means a period between and , or and , that is, from the time when ‘user’

send request to ‘server’ until the time ‘server’ return response to ‘user’.

A period from to , which means one transaction, and from to it is another

transaction. The ‘server’ can’t keep ‘My name’ over a transaction, so ‘server’ can’t answer

when it is asked ‘My name’ in the next transaction.

We can say ‘In web application, we can’t keep data across web pages’.

But we need to keep data across web pages otherwise we need to enter our ID or name

every time we change web page on an application.

PHP session is a mechanism to keep data across pages.

91

2) PHP session

When PHP session mechanism is working, how does it works on web apps.

As you see in the picture above,

a. Session data is generated on ‘server’ and kept in ‘user’ side.
The path where session data is stored is defined in ‘php.ini’.
You can find by the property name ‘session.save_path’.

b. Every time ‘user’ send request to ‘server’, session data is sent to
‘server’, too.

c. Session data is updated on the ‘server’ and returned to ‘user’.

d. Session data will be deleted when ‘user’ log out from the application or ‘user’ quit the
browser or ‘user’ leave session data
as it is for over specified seconds which is defined in ‘php.ini’.

3) Functions and variables for session data handling

internet

Please start session mechanism.

My name is XXXX.

OK! I’ve got it, and this is your session ID and

data.

Please start session. This is my session ID.

Do you know my name?

Your name is XXXX.

This is your session ID and data.

user
server Session ID : *****

MyName = XXXX

Session ID: *****

Session ID : *****

MyName = XXXX

<?php session_start(); ?>

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Session sample </title>

</head>

<body>

 <p>Session started</p>

 My name is S.John

 <?php $_SESSION[“myName”] = “S.John”; ?>

</body>

</html>

92

In the example above,

session_start() : Function to declare starting session.
There must be no output before this function.
Don’t put even one space before session_start(), which means
before HTML output like ‘<html>…’, session_start() function should be
executed.

$_SESSION : One of superglobal variables. We can generate, update session data by this
superglobal.
In the example above, one session data with key ‘myName’ is created,
and the value ‘K.Tezuka’ is set.

Other functions related to session;

session_unset() : Function to clear all keys and values in $_SESSION.

session_destroy() : Function to delete session file.

[Practice 37] Session data handling

Make a program ‘ex37.php’ shown below, and access to it on your browser;

After accessing to ‘ex37,php’, check the folder ‘<xampp root>/tmp’.

Check whether session file exists or not, and if exists, check the file name and ‘PHPSESSID’

value shown on your browser.

Confirm that session mechanism makes session file on your local folder.

<?php session_start(); ?>

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Session data handling</title>

</head>

<body>

 <?php

 echo “PHPSESSID : “ . $_COOKIE[“PHPSESSID”] . “
”;

 $_SESSION["fruit"] = "apple";

 foreach ($_SESSION as $name => $value) {

 echo "$name : $value
"

 }

 ?>

</body>

</html>

93

ex37.php

output from ‘ex37.php’ on a browser:

after accessing, session file is on ‘<xampp root>/tmp’ folder

(session file)

(session data)

[Practice 38] Session data handling

Make a program ‘ex38.php’ shown below, and access to it on your browser;

<?php session_start(); ?>

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Session data handling</title>

</head>

<body>

 <?php

 $_SESSION[“fruit”] = “banana” // update session data

 $_SESSION["color"] = "yellow"; // add new session data

 foreach ($_SESSION as $name => $value) {

 echo "$name : $value
"

 }

 ?>

</body>

</html>

94

You can understand how to add/update session data by $_SESSION superglobal variable.

session data before executing session_unset();

session data after executing session_unset();

There’s nothing in the session file.

If you put ‘session_destroy();’ instead of ‘session_unset()’ in ‘ex39.php’, then this session file

‘sess_ugt2････’ will be removed. Try it.

[Practice 39] Session data handling (clear session, delete session)

Make a program ‘ex39.php’ shown below, and access to it on your browser;

<?php session_start(); ?>

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Session data handling</title>

</head>

<body>

 <?php

 foreach ($_SESSION as $name => $value) {

 echo "$name : $value
"

 }

 session_unset();

 ?>

</body>

</html>

95

4) cookie

‘cookie’ is also one mechanism in windows to keep some data across states in web applications.

‘cookie’ has the same structure as ‘session’, it’s an array with key and value.

‘cookie’ is a browser mechanism, which means if you use IE, then you will use IE’s ‘cookie’.

In case of Google Chrome, ‘cookie’ is a binary file stored in a folder below:

c:/document and settings/<user>/AppData/local/Google/Chrome/User Data/default

Functions related to ‘cookie’ management:

setcookie() : Function to define a new cookie.

Syntax : setcookie($name, $value, $expire, $path, $domain, $secure,

 $http);

$name : Name of a cookie. (required)

$value : Value of a cookie. (optional)

$expire : define when this cookie expires in seconds.(optional)

 ex) ‘time() + 86400 * 7’ means to expire 1 week later

 ex) 0 : expire after browser close

 Default is 0.

$path : Path(directory) of the cookie on the server. (optional)

 ‘/’ means the cookie can reside in entire domain.

 Default is the current directory.

$domain : Specify the name of domain (optional)

$secure : If set TRUE, cookie will be sent only in HTTPS secure

 protocol. Default is FALSE.

$http : If set TRUE, only HTTP protocol can be tranmit cookies,

 and any other scripting language can’t access cookies.

 Better for avoiding XSS attacks. Default is FALSE.

$_COOKIE[] : Superglobal for cookies.

96

5) Difference between session and cookie

‘session’ is a mechanism which is controlled by web applications on web server.

‘cookie’ is a mechanism which is controlled by browser on user’s PC.

‘session’ data are usually deleted ‘log-off’ operation or after specified period, ‘cookies’ are deleted
when user do ‘delete’ operation on a browser.

In “Practice 37”, we check one superglobal ‘$_COOKIE’.
Session mechanism uses Cookie to save ‘Session ID’ with Cookie name ‘PHPSESSID’ whose value shows
random value of session data file name.

Cookie name : PHPSESSID

 value : ugt……..te5

Session data file name

97

PHP filters

In web applications, we should validate input data from application users.

PHP filters support our validation process in our PHP programs.

Functions related to PHP filters :

filter_var() : function to validate and sanitize input data.

Syntax :

filter_var($variable, $filter)

$variable Value to filter

$filter Filter ID. Filter ID is a integer value assigned to
each filter. See a list below.

Return value : if successful, filtered value wwill be returned
if not (= there’s unmatched characters in $varuable),
then return FALSE.

filter_input() : function to validate data in external variable GET, POST, SESSION, COOKIE or ENV.

Syntax :

filter_input($type, $variable, $filter, $option)

$type Dara type to check. One of the following;
INPUT_GET. INPUT_POST, INPUT_SESSION,
INPUT_COOKIE, INPUT_ENV

$variable Variable name to check

$filter Filter ID. Filter ID is a integer value assigned to
each filter. See a list below.

$option some $filters have option
 (see example 2) in next page)

Some filter’s definition :
 (in details, see http://php.net/manual/en/filter.filters.php)

Filter Constant ID value description

FILTER_VALIDATE_ENAIL 274 Validate an e-mail address

FILTER_VALIDATE_IP 275 Validate an IP address

FILTER_VALIDATE_URL 273 Validate a URL

FILTER_SANITIZE_ENAIL 517 Remove all illegal characters from an e-mail
address

http://php.net/manual/en/filter.filters.php

98

Examples:

1) Validating e-mail address

2) Validating IP address

<?php

 $email = “scot.baily@example.com”;

 if(filter_var($email, FILTER_VALIDATE_EMAIL) === FALSE) {

 echo(“$email is invalid email address”);

 } else {

 echo(“$email is valid email address”);

 }

?>

<?php

 $ip = “192.168.101.18”;

 if(filter_var($ip, FILTER_VALIDATE_IP, FILTER_FLAG_IPV4) === FALSE) {

 echo(“$ip is invalid ip address for ipV4”);

 } else {

 echo(“$ip is valid ip address for ipV4”);

 }

?>

[Practice 40] Filtering

Make a program ‘ex40.php’ which has a form with input field for email address and send it to

‘ex40b.php’ which validate received email address. Validation result should be displayed with some

message on the browser.

email address :

submit

Some message for

validation result

ex40.php

ex40b.php

99

PHP error handling

There are several ways for error handling in PHP;

 1) Using die() function, stop PHP script

 2) Define custom error handling function

 3) “try-catch” exception handling (PHP5 and later)

Without error handling, you will get some message from PHP;

1. Using die() function

In the example above, we can do validation check for calculation and add very simple error handling.

Modify example above to codes shown below and try it;

[Practice 41] Error handling : without error handling

Make a program ‘ex41.php’ ;

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Error handling (1) without any error handling</title>

</head>

<body>

 <?php

 $var1 = 100;

 $var2 = 0;

 $result = $var1 / $var2;

 echo(‘$var1 / $var2 = “ . $result . ‘
’);

 ?>

</body>

</html>

 <?php

 $var1 = 100;

 $var2 = 0;

 if($var2 <> 0) {

 $result = $var1 / $var2;

 echo(‘$var1 / $var2 = “ . $result . ‘
’);

 } else {

 die(‘Division by 0’);

 }

 ?>

100

2. Custom error handling function

Sometimes we don’t want to stop script and continue it depending on error level.

PHP defines several error level and such errors as ‘fatal error’ level can’t continue a script any more but

other errors can continue.

Table below shows PHP error levels;

value constant description

1 E_ERROR Fatal run-time error.

2 E-WARNING Run-time warning. Not fatal.

4 E_PARSE Compile-time parse error. Not fatal.

8 E_NOTICE Run-time notice. Not fatal.

16 E_CORE_ERROR Fatal error at PHP start up.

32 E_CORE_WARNING Warning error at PHP start up. Not fatal.

64 E_COMPILE_ERROR Compile-time error. Fatal.

128 E_COMPILE_ WARNING Compile-time warning error. Not fatal.

256 E_USER_ERROR User-defined fatal error.

512 E_USER_ WARNING User-defined warning error. Not fatal.

1024 E_USER_NOTICE User-defined notice. Not fatal.

 2048 E_STRICT PHP suggest changes to your codes for forward compatibility

4096 E_RECOVERABLE_ERROR Catchable fatal error

8192 E_DEPRECATED Run-time notice. Code will not work in future version.

16384 E_USER_DEPRECATED User-defined E_DEPRECATED notice.

32767 E_ALL Enable all PHP errors and warning

error_reporting() : define which levels of error are reported.

Syntax : error_reporting(level);

level : (optional) specify error report level for current script.

ex)
 error_reporting(E_ERROR | E_WARNING | E_PARSE);
 // report runtime errors

Custom error handling function may have such definition ;

function_name(error_level, // error level. Required.
 error_message, // error message. Required.
 error_file, // file name where error occurred.
 error_line, // line number where error occurred
 error_context); // array of variables and values

101

set_error_handler() : function to set user-defined error handler function.

Syntax : set_error_handler(errorhandler, errorlevel);

errorhandler : name of user-defined error handling function. Required.

errorlevel : which error level the function will show. Optional.
 Default is E_ALL

[Practice 42] Error handling : user-defined error handler

Make a program ‘ex42.php’ ;

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Error handling (1) without any error handling</title>

</head>

<body>

 <?php

 function customErrorHandle ($errlvl, $errmsg){

 eho(“Error [$errlvl] $errmsg
”);

 }

 set_error_handler(“customErrorHandle”)

 $var1 = 100;

 $var2 = 0;

 echo(‘$var1 + $var2 =’ . ($var1 + $var2) . ‘
’);

 echo(‘$var1 - $var2 =’ . ($var1 - $var2) . ‘
’);

 echo(‘$var1 / $var2 =’ . ($var1 / $var2) . ‘
’);

 echo(‘$var1 * $var2 =’ . ($var1 * $var2) . ‘
’);

 ?>

</body>

</html>

‘Division by zero’ error occurred. User-

defined function ‘customErrorHandle’ is

called and given message is shown with error

level, which is ‘E_WARNING’, not fatal, so

process didn’t stopped and continue until

end.

102

3. try-throw-catch exception handling

‘try-throw-catch exception handling’ is new error handling in PHP5.

Here’s one simple example;

[Practice 43] PHP exception handling

Make a program ‘ex43.php’ ;

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Exception handling (1)</title>

</head>

<body>

 <?php

 function calc($var1, $var2) {

 echo “$var1 and $var2
”;

 echo(‘$var1 + $var2 =’ . ($var1 + $var2) . ‘
’);

 echo(‘$var1 - $var2 =’ . ($var1 - $var2) . ‘
’);

 if($var2 <> 0) {

 echo(‘$var1 / $var2 =’ . ($var1 / $var2) . ‘
’);

 } else {

 throw new Exception(“Divide by zero”);

 }

 echo(‘$var1 * $var2 =’ . ($var1 * $var2) . ‘
’);

 }

 try {

 calc(10, 20);

 calc(100, 0);

 } catch (Exception $e){

 echo “[Error] : $e->getMessage() “;

 }

 ?>

</body>

</html>

After execution of ‘catch’ block, process

terminated.

To continue process after exception

block, we need to define custom error

handling such as codes shown in

‘ex42.php’.

103

[Practice 44] PHP exception handling

Modify ‘ex43.php’ to continue process after error ;

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Exception handling (1)</title>

</head>

<body>

 <?php

 function customErrorHandle($errlvl, $errmsg){

 eho(“Error [$errlvl] $errmsg
”);

 if($errlvl === E_ERROR) { // if fatal error, exit process

 exit();

 }

 }

 function calc($var1, $var2) {

 echo “$var1 and $var2
”;

 echo(‘$var1 + $var2 =’ . ($var1 + $var2) . ‘
’);

 echo(‘$var1 - $var2 =’ . ($var1 - $var2) . ‘
’);

 if($var2 <> 0) {

 echo(‘$var1 / $var2 =’ . ($var1 / $var2) . ‘
’);

 } else {

 throw new Exception(“Divide by zero”);

 }

 echo(‘$var1 * $var2 =’ . ($var1 * $var2) . ‘
’);

 }

 try {

 set_error_handler(“customErrorHandle”);

 calc(10, 20);

 calc(100, 0);

 } catch (Exception $e){

 echo “[Error] : $e->getMessage() “;

 }

 ?>

</body>

</html>

104

MySQL database

MySQL is a database system which is ;

1) free to use

2) using standard SQL

3) easy to use with PHP

When we use MySQL, we need to configure and prepare its operating environment.

Operating environment is defined in ‘php.ini’ and ‘my.ini’.

 (‘my.ini’ is a name only for windows, for UNIX, Linux and Mac it is ‘my.cnf’.)

1. ‘php.ini’

Information in ‘php.ini’ related to MySQL resides in;

‘extension’ property in [php] section

‘mysql’ property in [MySQL] section

Here, you can see ‘extension’ properties in [php] section;

As for [MySQL] section in ‘php.ini’, we can keep it as it is.

when you use MySQL, uncomment this line

when you use Oracle, uncomment this line

PHP & Web programing (10)

105

2 ‘my.ini’

2-1 Folder path used in MySQL.

‘tmpdir’ and ‘datadir’ can be set anywhere on your PC, but you must give these folder at least

‘read/write oermission’.

‘socket’ and ‘basedir’ will be under <mysql> folder.

2-2 ‘innodb’

‘innodb’ is one of MySQL database engine. We’d better use it for better efficiency.

2-3 Import data from an external file

To enable to import data from an external file, add one line shown below;

106

3 State transition in MySQL

DB Server
MySQL

User X User Y Event
DB A DB B DB C

Start/Stop MySQL service is server side event/operation.

Connect/Disconnect to/from MySQL each database is user/client side event/operation, but executed on the

server.

Operations on individual database are also use/client operations, but executed on

the server.

Each database can be accessed by multi clients. Tables in a database also can be accessed concurrently by

multi clients except when a client open table in exclusive mode.

(in case where XAMPP is installed in user PC and run, all events occur on

the same user PC, but in actual service environment, ‘start/stop MySQL

service’ is executed on the server(DB server))

DB server starts MySQL as

service
start

Connet DB:A

stop

Disconnet DB:A

Connet DB:C

Disconnet DB:C

Connet DB:B

Disconnet DB:B

Connet DB:A

Disconnet DB:A

User X connects DB:A

User Y connects DB:B

User X connects DB:C

User Y connects DB:A

User X dosconnects DB:A

User X dosconnects DB:C

User Y dosconnects DB:A

User Y dosconnects DB:B

DB server stops MySQL

service

107

4 Start & stop MySQL

4-1 Register MySQL as service

4-1-1 Using command line

Key in command shown below;

 mysqld --install

If you see a message shown on

the right, MySQL is successfully

 installed as service.

After registering successfully, you can check it as follows;

 <control panel> - <administration tool> - <service>

4-1-2 Using XAMPP control panel

On XAMPP control panel, you will see ‘service’ checkbox on the left.

Check it, then MySQL is registered as service.

108

4-2 Start MySQL

4-2-1 from command line

After registering MySQL as a service and ‘startup type’ is ‘automatic’, you don’t need to start

MySQL manually.

But just after registering as a service, once you need to start MySQL manually. See a picture below;

 ‘net start mysql’ is to start MySQL as service.

4-2-2 from XAMPP control panel

Very simple. You need only to press ‘start’ button for MySQL.

109

4-3 Stop MySQL

4-3-1 from command line

 ‘net stop mysql’ is to stop MySQL service.

4-3-2 from XAMPP control panel

Press ‘Stop’ button of MySQL shown below;

110

4-4 Using MySQL command-line tool

In this training, we use MySQL database from PHP programs, so you don’t have a chance to use

MySQL command-line tool.

When you don’t have any GUI tool for MySQL like XAMPP, phpMyAdmin, you can use them.

As we don’t have enough time to study MySQL command-line tool, only two commands are shown

here.

MySQL command-line tool will run on ‘MySQL shell, which can be started by ‘mysql’ command

shown below;

mysql -u user-name -ppassword database-name

user-name : valid user registered on MySQL

 Default user ‘root’ can be used without

 password even though very dangerous.

password : valid password. Just after installing MySQL,

 user ‘root’ doesn’t have any password.

 Attention! Between ‘-p’ and password there’s

 no blank.

database-name : valid database name.

Above example shows to connect MySQL database ‘test’ by the

user ‘root’. A prompt to ask password will come out.

then you’ll see some message and MySQL prompt shown below;

You are now in MySQL command-line tool.

You can give SQL statements or MySQL commands.

111

4-4-1 open one database

use database-name;

You can specify database name in ‘mysql’ command shown in the previous page.

In the command-line tool, you can open other database with ‘use’

command.

Attention! : In command-line tool, SQL statement should be stopped by ‘;’(semi-colon).

4-4-2 close database and quit the command-line tool

quit;

exit;

‘quit’ or ‘exit’ command close current database and quit/exit command-line tool, and go back to

Windows/DOS prompt.

For MySQL command-line tool in detail, visit the site below ;

 http://dev.mysql.com/doc/refman/5.6/en/mysql.html

http://dev.mysql.com/doc/refman/5.6/en/mysql.html

112

5. phpMyAdmin

‘phpMyAdmin’ is a GUI tool for MySQL included in XAMPP and has been installed when you installed

XAMPP.

You can start phpMyAdmin from XAMPP control panel, by pressing ‘Admin’ button on ‘MySQL’ line.

Screen of phpMyAdmin is shown below;

113

If you see some message on a lower part, you need to fix each problem.

Such message as shown below indicates that administrative user ‘root’ doesn’t have password. You’d

better set password to ‘root’.

To use phpMyAdmin, first you have to select database from the database list shown below or create

database.

After you select one database, then you can manipulate database, tables in the tool. You will see it later.

You can select database from the list or

create new database.

114

6 Making new user

In our training, we’ll not use ‘root’ as a MySQL user because it is recommended not to use ‘root’ in web

applications.

Our new MySQL user is;

 user name(ID) : DBuser

 user password : password

 host : localhost

Open phpMyAdmin and select ‘Users’ on the menu;

Input 4 fields; ‘User name’,’Host’,’Password’ and ‘Re-type’.

Check a check-box ‘Global Privileges – Check All’ check box.

Press ‘Go’ button at the lower part of the screen.

115

After making new user ‘DBuser’, we’d better update some parts related to MySQL in ‘php.ini’ shown below;

php.ini

7 SQL syntax

We’ll see main SQL sentences here, not all.

In this text, we use PDO, which stands for ‘PHP Data Objects’ and provides us same user interface for

different databases like MySQL, Oracle, SQL Server and so on.

PDO is object oriented tool, so you need to get familiar with handling class and objects.

7-1 Connect MySQL

Syntax :

 <connection_instance>

 = new PDO(<connection_strings>,<user_name>,<password>)

<connection_strings>

“mysql:host=<host_name>;dbname=<db_name>”

 <host_name> : In our case, it’s ‘localhost’

 <db_name> : In our case, it’s ‘test’

<user_name> : user name for MySQL. In our case, it’s ‘DBuser’.

<password> : user password. In our case, it’s ‘password’.

<connection_instance> : object variable for DB. ex) $conn

For example :

 $conn = new PDO(“mysql:host=localhost;dbname=test”, ‘DBuser’, ‘password’);

116

In the above example, you can try some exceptional cases; for example, you can try to connect

database ‘testA’ non-existing DB name, to use ‘passwordX’ for password to cause password failure,

and so on.

7-2 CREATE database

SQL Syntax :

CREATE DATABASE <database_name>

Using PDO, codes for creating DB will be as follows;

‘exec()’ is one method in PDO class and execute SQL statement given in

argument. ‘exec()’ method is used when SQL will not return data set.

[Practice 45] Connecting to MySQL

Make a program ‘ex45.php’ ;

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Exception handling (1)</title>

</head>

<body>

 <?php

 $host = ‘localhost’;

 $user = ‘DBuser’;

 $pass = ‘password’;

 $db = ‘test’;

 try {

 $conn = new PDO(“mysql:host=$host;dbname=$db”,$user,$pass);

 $conn->setAttribute(PDO::ATTR_ERRMODE,

 PDO::ERRMODE_EXCEPTION);

 echo “Connected successfully
”;

 } catch(PDOexception $e) {

 echo “Connection failed : “ . $e->getMessage() . “
”;

 }

 ?>

</body>

</html>

 $conn = new PDO(“mysql:host=$host;dbname=$db”, $user, $pass);

 .

 .

 $sql = “CREATE DATABASE myDB”;

 $conn->exec($sql);

 .

 .

Values of $host, $db, $user and $pass

should be given beforehand.

$host : host name(localhost)

$db : database name(myDB)

$user : user name(DBuser)

$pass : user password(password)

117

[Practice 46] Creating MySQL database

Make a program ‘ex46.php’ ;

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Exception handling (1)</title>

</head>

<body>

 <?php

 $host = ‘localhost’;

 $user = ‘DBuser’;

 $pass = ‘password’;

 $db = ‘test’;

 $newDB = ‘myDB’;

 try {

 $conn = new PDO(“mysql:host=$host;dbname=$db”,$user,$pass);

 $conn->setAttribute(PDO::ATTR_ERRMODE,

 PDO::ERRMODE_EXCEPTION);

 echo “Connected successfully
”;

 $sql = “CREATE DATABASE $newDB”;

 $result = $conn->exec($sql);

 if($result === FALSE) {

 echo “Failed to CREATE DB : “ . $sql . “
”;

 } else {

 echo “DB $newDB created successfully
”;

 }

 } catch(PDOexception $e) {

 echo “DB Failed : “ . $e->getMessage() . “
”;

 }

 ?>

</body>

</html>

118

7-3 CREATE table

SQL Syntax :

CREATE TABLE <table_name> (

 <column_name> <data_type> <attribute> … <attribute>,

 <column_name> <data_type> <attribute> … <attribute>

 …

 < column_name> <data_type> <attribute> … <attribute>

)

<table_name> : name of the table

<column_name> : name of the column

<data_type> : data type of the column

some ‘data types’ are shown below;

s

size : maximum numbers of characters, digits

d : numbers of digits to the right of decimal point

<

a

t

t

r

i

b

u

t

e

>

in detail, seSee http://www.w3schools.com/sql/sql_datatypes.asp

Numeric types Text types Date&time types

INT(size) CHAR DATE()

SMALLINT(size) VARCHAR(size) DATATIME()

BIGINT(size) TINYTEXT TIMESTAMP()

FLOAT(size,d) TEXT TIME

DOUBLE(size,d) BLOB YEAR()

DECIMAL(size,d) LONGTEXT

attribute description

NOT NULL Not allowed to have NULL as value

DEFAULT Set default value

UNSIGNED Stored data must have positive numbers or zero

AUTO INCREMENT MySQL increases the value one by one each time a new record is
added

PRIMARY KEY The field is defined as unique key in the table

http://www.w3schools.com/sql/sql_datatypes.asp

119

 :

7-4 Insert data into MySQL table

SQL Syntax :

INSERT INTO TABLE <table_name> (<column_1>, <column_2>,…)

 VALUE(<value_1>, <value_2>, …)

[Practice 47] Creating MySQL table

Using phpMyAdmin, make a SQL statement to create a table, table name is ‘country’ and columns are

defined as follows;

Column name Data type size attribute remarks

id int PRIMARY KEY
AUTO INCREMENT

name varchar 128 Country name

capitalcity varchar 128 Capital city

population Int UNSIGNED population

To make SQL statement, follow steps below;

 1) open phpMyAdmin from XAMPP control panel

 2) select database ‘myDB’

 3) select SQL tab

120

<column_1>, <column_2>, … : list of column name

<value_1>, <value_2>, … : value list corresponding with column

There are several ways to insert rows;

1) using ‘insert’ tab on phpMyAdmin, insert rows one by one

2) type in Insert SQL statement to MySQL prompt on command prompt window

3) type in Insert SQL statement on phpMyAdmin

4) make a text file with Insert SQL statement and import it with LOAD DATA INFILE statement (on

prompt window or on phpMyAdmin)

7-4-1 Insert a row one by one on phpMyAdmin

1) open phpMyAdmin and select ‘myDB’ database. You’ll see one table ‘country’ which we’ve made

in the previous chapter 7-3.

Select table ‘country’ (press table name link)

2) Select ‘insert’ tab

121

3) You’ll see a window to insert a row one by one.

You don’t need to fill ‘id’ field because it is defined as ‘AUTO INCREMENT’ field, which means value

of ‘id’ is automatically set by MySQL.

Fill in ‘name’(country name), ‘capital’(capital city) and ‘population’ fields

and press ‘Go’ button.

7-4-2 Insert records by Insert SQL statement on phpMyAdmin

1) On phpMyAdmin, selet ‘country’ table (same as 7-4-1 1))

2) Select ‘SQL’ tab

3) SQL tab window is shown below. You can find ‘INSERT’ button at the bottom. Press it, then you’ll

find a template of INSERT SQL statement.Now,

[Practice 48] Insert record one by one via phpMyAdmin

Insert a record shown below using window shown above.

 Country name : United States of America

 Capital city : Washington D. C.

 Population : 311630000

122

we don’t need to input ‘id’ field, so you can erase ‘id’ field and one value element.

4) Now, the template will be just like shown below;

Don’t forget to put ‘;’ at the end.

You can copy this template as many as you need.

5) After you make SQL statement, press ‘Go’ button at thebottom.

6) To insert multiple rows in one SQL statement, repeat

value list enclosed by bracket separated by ‘,’(comma).

[Practice 49] Insert record by INSERT SQL statement on phpMyAdmin

Insert two records shown below by INSERT SQL statement on phpMyAdmin

 Country name : Mexico

 Capital city : Mexico City

 Population : 112322800

 Country name : Canada

 Capital city : Ottawa

 Population : 33573000

INSERT INTO <table_name> (<column_1>, <column_2>,…)

 VALUES

 ((<value_1_1>,<value_1_2>,…),

 (<value_2_1>,<value_2_2>,…),

 ……

 (<value_n_1>,<value_n_2>,…)

);

123

7-4-3 Insert records by LOAD DATA INFILE statement

LOAD DATA INFILE statement will insert rows into a table from external text file. We need to make a

text file with INSERT SQL statement.

1) Make a text file named ‘country.txt’ shown below;

 country.txt

2) Save it in some folder like ‘C:/tmp’.

3) Open SQL tab on table ‘country’ on phpMyAdmin just like 7-4-2,

and type in LOAD DATA INFILE statement as below;

4) Press ‘Go’ button

5) If you see some error message, you must follow the instruction shown in message.

6) You can get data list as shown below;

Brasil,Brasilia, 202714700

Peru,Lima, 29132000

[Practice 50] Insert record by LOAD DATA INFILE statement

 on phpMyAdmin

Make a text file ’country2.txt’ with data below;

Trinidad and Tobago,Port of Spain,1339000

Urguay,Montevideo,3477780

Guyana,Georgetown,773000

Insert these 3 records into ‘country’ table using LOAD DATA INFILE statement.

124

7-5 SELECT statement

SELECT statement will search data from our database and tables.

Syntax:

SELECT <column_1>,<column_2>,…,<column_n> FROM <table_name>;

SELECT * FROM <table_name>;

SELECT DISTINCT <column_1>,…,<column_n> FROM <table_name>;

SELECT DISTINCT * FROM <table_name>;

SELECT <column_1>,<column_2>,…,<column_n> FROM <table_name>

 WHERE <column_1> <operator> <value> (AND|OR <condition> …);

<column_1>… : column name in a table

<table_name> : table name

<operator> : comparison operator. See 7-5-x in details

<condition> : condition consists of column name, operator and value

‘*’ : ‘*’ indicates that all fields in a table will be selected

ex) SELECT name from country;

 select column ‘name’ from table ‘country’.

ex) SELECT * from country;

 select all columns from table ‘country’.

ex) SELECT * from country WHERE population > 100000000;

 select all columns from table ‘country’

 on condition where value of population is greater than 100000000.

ex) SELECT * from country WHERE population > 100000000

 ORDER BY name;

 select all columns from table ‘country’

 on condition where value of population is greater than 100000000

 and the result are sorted by name in alphabetic ascending order.

 (in ORDER clause, ASC is default)

125

ex) SELECT * from country WHERE population > 1000000

 ORDER BY population DESC;

 select all columns from table ‘country’

 on condition where value of population is greater than 1000000

 and the result are sorted by population in descending order.

7-5-1 SELECT with JOIN keyword

 Suppose that here are 3 tables ‘sales’,‘product’ and ‘customer’

1) Suppose that your boss wants to know which product wasn’t sold at all.

How you can get from transaction table ‘sales’ and master table ‘product’?

In such cases, we can use JOIN keyword in SELECT statement.

 SELECT product.id, product.name, sales.qty FROM product

 LEFT JOIN sales ON product.ID = sales.product

 ORDER BY product.ID

 This SQL will make such list below;

‘sales.qty = null’ means that ‘this product wasn’t sold at all.

Then the SQL statement which your boss wants is;

 ‘sales’ able

date orderID product qty customer

8/24 0824001 100 4 C002

8/25 0825001 102 2 A010

8/25 0825003 103 12 C002

‘product’ table

ID name price

100 A 250

101 B 830

102 C 145

103 D 53

‘customer’ table

ID name

A010 John

B005 Kate

C002 Mary

C004 Steve

result set

product.ID product.name sales.qty

100 A 4

101 B null

102 C 2

103 D 12

126

 SELECT product.id, product.name, sales.qty FROM product

 LEFT JOIN sales ON product.ID = sales.product

 WHERE sales.qty IS NULL

 ORDER BY product.ID

7-6 CREATE VIEW statement

‘VIEW’ is a virtual table produced by some SQL statement.

For example, in tables shown in 7-5-1, we can calculate amount of each order

shown below;

 SELECT sales.orderID, sales.qty * product.price as amount

 FROM sales, product

 WHERE sales.product = product.ID;

Then we’ll get a result set shown below;

This result set is not an actual table, but we can treat the result set just like a real table.

If we need to use same view in other cases, then we can register this SQL as a VIEW. It isn’t a

table, it’s only a SQL statement on MySQL database. Just like this;

 CREATE VIEW vSalesAmount AS

 SELECT sales.orderID, sales.qty * product.price as amount

 FROM sales, product

 WHERE sales.product = product.ID;

 Then we can reuse this VIEW in the following simple SQL;

 SELECT * FROM vSalesAmount;

result set

sales.orderID amount

0824001 1000

0825001 290

0825002 636

[Practice 51] SELECT statement with JOIN

Make SQL statement to know ‘Who didn’t buy anything during these days?’

127

7-6 UPDATE statement

UPDATE statement is used to update rows in a table.

Syntax:

UPDATE <table_name>

 SET <column_name> = <value> (, <column_name = <value>, …)

 WHERE <column_name> <operator> <value>;

ex) UPDATE product SET price = 300 WHERE ID = 100;

This UPDATE statement will change the ‘price’ of product ‘A’(‘ID’ = 100) to 300.

ex) UPDATE sales SET qty = 15, customer = ‘B005’ WHERE orderID = ‘0835001’;

This UPDATE statement will change the ‘qty’ and ‘customer’ of sales

 where ‘oerderID’ is equal to ‘0825001’.

Attention ; In UPDATE statement, don’t forget to give WHERE condition, otherwise

you will get result where all rows are updated and can’t be recovered.

7-7 DELETE statement

DELETE statement is used to dekete rows in a table.

Syntax:

DELETE FROM <table_name>

 WHERE <column_name> <operator> <value>;

Attention ; Don’t forget to give WHERE condition,

otherwise you will have lost all rows in the table and there’s no way or method to recover

deleted rows.

There are so many SQL statement in MySQL. We can’t follow all statements here, so you can visit the

following URL to check SQL statements;

 https://dev.mysql.com/doc/refman/5.0/en/sql-syntax.html

 for data definition statement:

 https://dev.mysql.com/doc/refman/5.0/en/sql-syntax-data-definition.html

 for data manipulation statement:

 https://dev.mysql.com/doc/refman/5.0/en/sql-syntax-data-manipulation.html

https://dev.mysql.com/doc/refman/5.0/en/sql-syntax.html
https://dev.mysql.com/doc/refman/5.0/en/sql-syntax-data-definition.html
https://dev.mysql.com/doc/refman/5.0/en/sql-syntax-data-manipulation.html

128

SQL Injection

What is SQL Injection?

Wikipedia says;

Web application is one of ‘data-driven application’.

As we studied already, HTML form with input fields and buttons will drive some program on the server.

We’ll develop very simple web application here and try to check how SQL injection is done on a web

application and how we can guard our apps from injection attacks.

Our simple example is :

 A HTML form for log in into our application.

 A table with user information including password field.

 Using these forms and table, we’ll try to log in.

 If user ID and password are valid, welcome message will be displayed.

1. Preparation

Before entering into this topic, we’ll make some tables and HTML forms.

1-1 ‘user’ table

Table structure

Column name Data type size Attribute remarks

recordID int PRIMARY KEY
AUTO INCREMENT

Record key

userID varchar 20 UNIQUE User ID

username varchar 128 User name

userpass varchar 128 PASSWORD password

data list

recordID userID username userpass

1 user1 Johnson password1

2 user2 MacDonald password2

PHP & Web programing (11)

SQL injection is a code injection technique, used to attack data-driven applications, in which malicious

SQL statements are inserted into an entry field for execution.

129

After creating table ‘user’, add 2 rows shown above;

After inserting two rows, contents of the table is show below;

1-2 Login form (ex52.php)

As for source code for this form(ex52.php), see page 137 and further.

user ID :

password :

submit

Error message / Welcome message

‘password’ column should be saved encrypted.

We’ll use ‘MD5’ encryption.

Select ‘MD5’ from dropdown list.

‘password’ column is encrypted.

Anyone can’t decrypt the ‘password’.

*** User Log in form ***

Error message

Error message

130

2 Trial

2-1 give a wrong ‘userID’ intentionally

You’ll see some error message on the screen. It’s normal.

2-2 give a correct ‘userID’ and ‘password’

You’ll see welcome message with user’s name. It’s normal, too.

2-3 give a correct ‘userID’, but for ‘password’, type in as shown bellow;

What happened? Did you see welcome message though you entered

wrong password? Why could you log in with wrong password?

This is one very simple example of SQL injection.

An example of web application without any guard against SQ injection.

userXXXX user ID :

password :

submit

*** User Log in form ***

password

User1 user ID :

password :

submit

*** User Log in form ***

password

User1 user ID :

password :

submit

*** User Log in form ***

1’ or ‘a’ = ‘a

131

3 Why did welcome message appear even though you typed a wrong password?

Let’s check the SQL statement which ‘ex52.php’ execute to authenticate.

Our program will assign values of ‘user ID’ and ‘password’ from the form to ‘$userID’ and ‘$password’

in the SQL statement above.

Then the SQL statement will be ;

 SELECT * FROM user WHERE userID = ‘user1’ and userpass = ‘1’ or ‘a’ = ‘a’;

How is the WHERE condition evaluated? There are 3 conditions;

 userID = ‘user1’ ------ condition 1

 userpass = ‘1’ ------ condition 2

 ‘a’ = ‘a’ ------ condition 3

<condition 1> is true or false(it depends on a record)

<condition 2> is false (any record doesn’t have such password)

<condition 3> is true (it’s always true)

Then

 “<condition 1> and <condition 2>” will be always false,

 but “(<condition 1> and <condition 2>) or <condition 3>” will be always true because <condition 3> is

always true.

This is because the SQL statement above will return a record set with all rows in a ‘user’ table, because

all rows will meet the WHERE condition.

Finally, anyone can log in without password information.

This is a typical example of SQL injection.

In the next page, we’ll study how we can guard our web apps from SQL injection attacks.

User1 user ID :

password :

submit

*** User Log in form ***

1’ or ‘a’ = ‘a

132

4 How to guard our web apps from SQL injection attacks

4-1 Encript ‘password’ field on MySQL using md5() function or

 sha1() function

4-2 Prevent single and double quotes used in ‘password’ field

4-3 Use PDO or MySQLi to access MySQL DB in PHP programs

4-4 Use ‘prepared statements’(you can say ‘parameter query’)

Here’s one example for the previous case ;

 function getUserRec($userID, $password, &$erMessage, &$passwordError) {
 $host = 'localhost';
 $user = 'DBuser';
 $pass = 'password';
 $db = 'myDB';

 try {
 $conn = new PDO("mysql:host=$host;dbname=$db",$user,$pass);
 $conn->setAttribute(PDO::ATTR_ERRMODE,
 PDO::ERRMODE_EXCEPTION);
 // definition of parameter query
 $query = $conn->prepare("SELECT * FROM user WHERE userID = ? AND userpass = md5(?)");
 // parameter query execution
 $query->execute(array($userID, $password));
 $resultSet = $query->fetchall();
 if(is_array($resultSet) and count($resultSet) > 0) {
 $returnValue = $resultSet;
 } else {
 $erMessage = "ID or password not matched";
 $returnValue = FALSE;
 }
 } catch(PDOexception $e) {
 $erMessage = "Error :" . $e->getMessage();
 $returnValue = FALSE;
 }
 unset($query);
 unset($conn);
 return $returnValue;
 }

 function checkUserID(&$userID, &$password, &$userIDerror, &$passwordError, &$resultSet) {
 $result = true;
 // check for userID
 if(empty($_POST["userID"])) {
 $userIDerror = "userID is required";
 $result = false;
 }
 if(! preg_match("/^[a-zA-Z0-9]*$/", $_POST["userID"])) {
 $userIDerror = "illegal letters included";
 $result = false;
 }
 if(empty($_POST["password"])) {
 $passwordError = "password is required";
 $result = false;
 }
 // avoid single, double quote in password field
 if(! preg_match("/^[a-zA-Z0-9 #$%&+*?=]*$/", $_POST["password"])) {
 $passwordError = "illegal letters included";
 $result = false;
 }
 // escaping input data for XSS attack
 $userID = escapeForInput($_POST["userID"]);
 $password = escapeForInput($_POST["password"]);
 $password = $_POST["password"];
 if($result) {
 // get user record from database
 $resultSet = getUserRec($userID, $password, $userIDerror, $passwordError);
 if($resultSet === FALSE) {
 $result = false;
 }
 }
 return $result;
 }

133

We encrypt ‘password’ field in ‘user’ table using md5() function;

We prevent single and double quotes in ‘password’ fields;

preg_match() function searches character/characters pattern in given strings

(in 2nd argument) in a pattern (in 1st argument).

In the example show above;

1
st

 argument ”/^[a-zA-Z0-9 #$%&+?=]*$/”

 ‘/’(slash) delimiter for preg_match() function

 ^(caret) start point of string

 [] Matches a single character that is contained within the brackets.

 []* Matches the preceding element zero or more times.

 a-z lower case letters

 A-Z upper case letters

 0 -9 digits

 $ end point of string

 ^[a-zA-Z0-9 #$%&+?=]*$ means;

 from start point to end point of string, repetition of

 one of (lower case alphabets) or (upper case of alphabets)

 or (digits from 0 to 9) or (one of special letters ‘ #$%&+?=’)

if(! preg_match("/^[a-zA-Z0-9 #$%&+*?=]*$/", $_POST["password"])) {
 $passwordError = "illegal letters included";
 $result = false;
}

134

preg_match() function works on ‘regular expression’ mechanism.

We need to know ‘reglar expression’ mechanism, but we don’t have enough time.

Visit and see the following web pages for further learning;

 for preg_match() function :

 http://php.net/manual/en/function.preg-match.php

 for regular expression;

 https://en.wikipedia.org/wiki/Regular_expression

 http://www.regular-expressions.info/php.html

Finally, we define a parameter query;

In SELECT statement, you’ll see two ‘?’(question marks). These are called ‘Placeholder’.

$query is a connection object which PDO has generated (see PHP source in page.5) and ‘$query-

>execute’ is an PDO execute method with two parameters here (‘array($userID, $password)’).

These two parameters will be assigned to two placeholders in SELECT statement respectively

$query->fetch or $query->fetchall will get rows which meet the ‘WHERE condition’ and have been

extracted from table. ‘fetch’ will get rows one by one, and ‘fetchall’ will get all rows at one time. The

result will be set into an array which is return value, if there’s no row, then the return value will be

‘FALSE’.

‘prepared statement’ (or ‘parameter query’) in PDO has a mechanism to guard from SQL injection

attacks in itself, so we can give raw value of ‘$_POST’ (or $_GET) variable to parameters.

The important point is ;

 “When we need to give input data from a web form to SQL statement,

 don’t forget to use ‘prepared statements(parameter query)’”.

 // definition of parameter query
 $query = $conn->prepare("SELECT * FROM user WHERE userID = ? AND userpass = md5(?)");
 // parameter query execution
 $query->execute(array($userID, $password));
 $resultSet = $query->fetchall();

http://php.net/manual/en/function.preg-match.php
https://en.wikipedia.org/wiki/Regular_expression
http://www.regular-expressions.info/php.html

135

136

 ‘ex52.php’ without any guard against SQL injection attacks

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>SQL injection test form</title>
 <style>
 .error {color: #FF0000;}
 </style>
</head>
<body>
 <?php
 function escapeForInput($data) {
 $data = trim($data);
 $data = stripslashes($data);
 $data = htmlspecialchars($data);
 return $data;
 }
 function getUserRec($userID, $password, &$erMessage, &$passwordError) {
 $host = 'localhost';
 $user = 'DBuser';
 $pass = 'password';
 $db = 'myDB';

 try {
 $conn = new PDO("mysql:host=$host;dbname=$db",$user,$pass);
 $conn->setAttribute(PDO::ATTR_ERRMODE,
 PDO::ERRMODE_EXCEPTION);
 $query = $conn->prepare("SELECT * FROM user WHERE userID = '" . $userID . "' AND
userpass = '" . $password . "'");
 $query->execute();
 $resultSet = $query->fetchall();
 if(is_array($resultSet) and count($resultSet) > 0) {
 $returnValue = $resultSet;
 } else {
 $erMessage = "ID or password not matched";
 $returnValue = FALSE;
 }
 } catch(PDOexception $e) {
 $erMessage = "Error :" . $e->getMessage();
 $returnValue = FALSE;
 }
 unset($query);
 unset($conn);
 return $returnValue;
 }

 function checkUserID(&$userID, &$password, &$userIDerror, &$passwordError, &$resultSet) {

 $result = true;

 // check for userID

 if(empty($_POST["userID"])) {

 $userIDerror = "userID is required";

 $result = false;

 }

 if(! preg_match("/^[a-zA-Z0-9]*$/", $_POST["userID"])) {

 $userIDerror = "illegal letters included";

 $result = false;

 }

137

(continued)

 if(empty($_POST["password"])) {

 $passwordError = "password is required";

 $result = false;

 }

 // escaping input data for XSS attack

 $userID = escapeForInput($_POST["userID"]);

 $password = escapeForInput($_POST["password"]);

 $password = $_POST["password"];

 if($result) {

 // get user record from database

 $resultSet = getUserRec($userID, $password, $userIDerror, $passwordError);

 if($resultSet === FALSE) {

 $result = false;

 }

 }

 return $result;

 }

 // process status true:successfull, false:have some errors

 $status = true;

 // set initial message / clear error message field

 $userIDerror = "Alphabet,Numerics,underscore";

 $passwordError = "";

 $errorMessage = "";

 // clear echo back field

 $userID = "";

 $password = "";

 $resultSet = FALSE;

 // check initial call or not

 if(array_key_exists('submit', $_POST)) {

 $userIDerror = "";

 $passwordError = "";

 // check ID and password by DB. if error, return false

 if(checkUserID($userID, $password, $userIDerror, $passwordError, $resultSet)) {

 $errorMessage = $resultSet[0]["username"] . " Successfully logged in";

 $status = TRUE;

 }

 }

 ?>

 <div>

 <p>*** User Log in Form ***</p>

 <form action="ex52.php" method="POST">

 User ID : <input type="text" name="userID" value="<?php echo $userID; ?>" />

 <?php echo $userIDerror; ?>

 password : <input type="password" name="password" value="<?php echo $password; ?>" />

 <?php echo $passwordError; ?>

 <?php echo $errorMessage; ?>

 <input type="submit" name="submit" value="submit" />

 </form>

 </div>

</body>

</html>

138

‘ex52,php’ with guard against SQL injection attacks

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>SQL injection test form</title>
 <style>
 .error {color: #FF0000;}
 </style>
</head>
<body>

 <?php
 // function for anti XSS attacks
 function escapeForInput($data) {
 $data = trim($data);
 $data = stripslashes($data);
 $data = htmlspecialchars($data);
 return $data;
 }
 function getUserRec($userID, $password, &$erMessage, &$passwordError) {
 $host = 'localhost';
 $user = 'DBuser';
 $pass = 'password';
 $db = 'myDB';

 try {
 $conn = new PDO("mysql:host=$host;dbname=$db",$user,$pass);
 $conn->setAttribute(PDO::ATTR_ERRMODE,
 PDO::ERRMODE_EXCEPTION);
 // definition of parameter query with placeholders
 $query = $conn->prepare("SELECT * FROM user WHERE userID = ?
 AND userpass = md5(?)");
 // parameter query execution
 $query->execute(array($userID, $password));
 $resultSet = $query->fetchall();
 if(is_array($resultSet) and count($resultSet) > 0) {
 $returnValue = $resultSet;
 } else {
 $erMessage = "ID or password not matched";
 $returnValue = FALSE;
 }
 } catch(PDOexception $e) {
 $erMessage = "Error :" . $e->getMessage();
 $returnValue = FALSE;
 }
 // release objects
 unset($query);
 unset($conn);
 return $returnValue;
 }

 function checkUserID(&$userID, &$password, &$userIDerror, &$passwordError, &$resultSet) {
 $result = true;
 // check for userID

139

(continued)

 if(empty($_POST["userID"])) {
 $userIDerror = "userID is required";
 $result = false;
 }
 if(! preg_match("/^[a-zA-Z0-9]*$/", $_POST["userID"])) {
 $userIDerror = "illegal letters included";
 $result = false;
 }
 if(empty($_POST["password"])) {
 $passwordError = "password is required";
 $result = false;
 }
 // avoid single, double quote in password field
 if(! preg_match("/^[a-zA-Z0-9 #$%&+*?'=]*$/", $_POST["password"])) {
 $passwordError = "illegal letters included";
 $result = false;
 }
 // escaping input data for XSS attack
 $userID = escapeForInput($_POST["userID"]);
 $password = escapeForInput($_POST["password"]);
 $password = $_POST["password"];
 if($result) {
 // get user record from database
 $resultSet = getUserRec($userID, $password, $userIDerror, $passwordError);
 if($resultSet === FALSE) {
 $result = false;
 }
 }
 return $result;
 }
 // process status true:successfull, false:have some errors
 $status = true;
 // set initial message / clear error message field
 $userIDerror = "Alphabet,Numerics,space,underscore";
 $passwordError = "Alphabet,Numerics,space,_#$%&+*?=";
 //$passwordError = "";
 $errorMessage = "";
 // clear echo back field
 $userID = "";
 $password = "";
 $resultSet = FALSE;
 // check initial call or not
 if(array_key_exists('submit', $_POST)) {
 $userIDerror = "";
 $passwordError = "";
 // check ID and password by DB. if error, return false
 if(checkUserID($userID, $password, $userIDerror, $passwordError, $resultSet)) {
 $errorMessage = $resultSet[0]["username"] . " Successfully logged in";
 $status = TRUE;
 }
 }
 ?>

140

(continued)

 <div>

 <p>*** User Log in Form ***</p>

 <form action="ex52.php" method="POST">

 User ID : <input type="text" name="userID" value="<?php echo $userID; ?>" />

 <?php echo $userIDerror; ?>

 password : <input type="password" name="password" value="<?php echo $password; ?>" />

 <?php echo $passwordError; ?>

 <?php echo $errorMessage; ?>

 <input type="submit" name="submit" value="submit" />

 </form>

 </div>

</body>

</html>

141

OOP in PHP

OOP stands for Object Oriented Programming.

1. What’s OOP?

“OOP is a programming paradigm based on the concept of ‘objects’”.

 (Wikipedia)

What’s “the concept of ‘object’”?

‘object’ has its states and behaviors;

 state ------- we can call it ‘data’ or ‘fields’ or ‘attributes’ or ‘properties’

 behavior ---- we can call it ‘methods’ or ‘procedures’

Then we can say

 ‘object’ has data/properties which show the state of the ‘object’.

 ‘object’ has methods which shows behaviors of the ‘object’.

for example;

‘Car’ is one object:

‘Car’ has its color, steering, max speed, seating capacity and so on

Car’s maker may also its attributes.

And ‘Car’ runs, stops, go straight, turn (to left / right), go back and so on.

Then we can define ‘Car’ as an object;

Suppose here are two cars, one is mine and the other is yours;

‘Car’ object

Data / properties

Color
steering

transmission
max speed

seating capacity
maker

Methods

Run
stop

go straight
turn to left

turn to right
go back

PHP & Web programming (12)

142

In OOP, ‘Car’ object is called ‘class’, ‘MyCar’ and ‘YourCar’ is called ‘instance’.

We can say a class is a blueprint, an instance is real thing generated by using a class(blueprint)

You remember one PHP code;

This PHP code shows;

 $conn is an instance of PDO class generated by ‘new’ keyword.

The counter term to OOP is ‘Procedural Programming’.

‘Procedural Programing’ doesn’t have such concept as ‘Object’.

‘Car’ object My car Your car

Properties

color: blue
steering: right

transmission: automatic
max speed: 180km/h

seating capacity: 6
maker: Toyota

color: red
steering: left

transmission: manual
max speed: 240km/h

seating capacity: 2
maker: Ford

Methods

run
stop

go straight
turn to left

turn to right
go back

run
stop

go straight
turn to left

turn to right
go back

Programing language

Procedural Programming

COBOL
Fortran

C
Pascal

PHP(up to PHP4)

data structure and its process
are separated

Object Oriented Programming

Java
C++
C#

PHP5

data and its behavior(process)
are enclosed in a object

143

2. Class and instance(or object)

In the previous page, we find ‘Class is a kind of blueprint’ and ‘instance is generated by a class(blueprint)’.

We can show one example with PHP code;

[Practice 53] Object, Properties, Methods

Show some examples of Object, Properties and Methods.

It is often said that when we talk about or explain something, we find in our talk many nouns and

verbs, and nouns may be properties and verbs may be methods of the object which is the subject we

are talking about.

Suppose we are talking about ‘animals’.

We may talk; animals has a head, two eyes, a mouth, two hands(some have more than two), sleep,

eat, run. Some animals walk on foot. Some can smile while others can’t.

[Practice 54] example of class and instance ex54.php

This program may be executed on a prompt window.

<?php
 class human
 {
 $name;

 function __construct($name = "") {
 $this->name = $name;
 echo $this->name . " starts now\n";
 }

 function __destruct() {
 echo $this->name . " ends now\n";
 }

 function sleep() {
 echo "I'm sleeoing now.\n";
 }

 function eat($eatThis) {
 echo "I'm now eating " . $eatThis . ".\n";
 }

 function wakeup($toWhom) {
 echo "Good morning! " . $toWhom . " How are you?\n";
 }
 }

 $John = new human("John");
 $Kate = new human("Kate");

 $John->eat("Egg and toast");
 $Kate->wakeup("John");
 $John->sleep();
 exit();
?>

constructor

destructor

class variable

144

The program ‘ex54.php’ will produce output on prompt screen as follows;

__constructor, __destructor

‘__constructor’ is a method which is called automatically when an instance is generated by ‘new’

keyword.

You can see two ‘… starts now’ message which are called by two ‘new’ keywords.

Usually the constructor is used for necessary initialization of an instance.

We can neglect to define constructor, then PHP will execute one constructor defined by PHP itself.

In the program above, one start message will be shown.

‘__destructor’ is called when all objects in one program don’t have any reference from other or

when a PHP program execute ‘exit()’.

You can see two ‘… ends now’ messages which executed destructor in two instances when ‘exit()’ is

executed.

3. 3(Three) important mechanisms in OOP

There are 3 main mechanisms in OOP.

 1) Encapsulation

 2) Inheritance

 3) Polymorphism

3-1 Encapsulation

Encapsulation is to avoid from accessing to data(properties) in an object directly. Data(properties) in

an object are always accessed and modified by a certain method defined in the object, which are

called ‘setter’ for modifying and ‘getter’ for referring. Some programing language call them ‘accessor’

and ‘mutator’.

145

For example, in the Practice54, we defined human class and in the class we have one property named

‘name’.

in OOP manner, we should define property’s scope as ‘private’. And we should define ‘getter’ and

‘setter’ to refer to/modify it;

In a program using class ‘human’;

By setting scope of properties as ‘private’ and defining ‘setter’,’getter’ method for properties,

properties can be guarded from being directly accessed and modified.

3-2 Inheritance

Suppose common characteristics of animals.

Animals walk, run, sleep, eat, ….

Animals has a head, hands, legs, eyes, colors, height, weight, ….

Can we define ‘Animal’ as a class? Let’s try...

<?php
 class human
 {
 private $name;

 public function getName() { // getter for $name
 return $this->name;
 }
 Public function setName($name) { // setter for $name
 $this->$name = $name;
 }

 $human = new human();

 $human->setName(“Johnson”);

 eho “My name is “ . $human->getName();

<?php
 class animal
 {
 private $head;
 private $hand;
 private $leg;
 private $eye;
 private $color;
 private $height;
 private $weight;

 public function setHead($head) {
 $this->head = $head;
 }

146

(continued)

This is a simple example of ‘animal’ class.

Human is a kind of ‘animal’, and as you know, human can smile while other animals can’t.

How can we define ‘human’ class? Should we define ‘human’ class by repeating ‘walk’, ’run’, ’eat’

methods?

 In such cases, ‘Inheritance’ mechanism can help us.

In the case above, we can define ‘animal’ class as ‘parent’ class, and ‘human’ class is ‘child’ class,

which can inherit properties and methods from the parent class.

In the code above;

‘extends’ keyword indicates that Class ‘human’ inherit Class ‘animal’.

All properties and methods in ‘animal’ class are inherited in ‘human’ class.

In addition, ‘human’ class defines its own method ‘smile()’.

 Abstract class

Sometimes we can’t define detail behavior in a methods, that means if we can define different

behaviors with different instances, then we can’t define only one behavior in a parent class.

Suppose in ‘animal’ class, we want to define one behavior named ‘greet’.

‘human’ will say ‘Hello!’, but ‘dog’ may greet with “bow-wow”.

 public function getHead() {
 return $this->head;
 }
 ……..
 Public function walk($toward) {
 Echo “I’m walking toward “ . $toward;
 }
 Public function run($speed) {
 Echo “I’m running “ . $speed;
 }
 Public function eat($eatThis) {
 Echo “I’m eating “ . $eatThis;
 }
}

<?php
 class human extends animal
 {
 // add unique method in child class
 public function smile() {
 echo “I’m smiling now.”;
 }
 }

147

In such cases, we define ‘abstract method’, and such classes which have ‘abstract

method’ is defined as ‘abstract class’.

See codes below;

Abstract class can’t be instanciated.

Abstract class should be inherited and have abstract methods in it.

And abstract method must not have any code in its content, that means, it has only definition of

methods(function).

In the inherited class, abstract methods must be implemented with codes.

<?php
 abstract class animal
 {
 private $head;
 private $hand;
 private $leg;
 private $eye;
 private $color;
 private $height;
 private $weight;

 public function setHead($head) {
 $this->head = $head;
 }
 public function getHead() {
 return $this->head;
 }
 ……..
 Public function walk($toward) {
 echo “I’m walking toward “ . $toward;
 }
 Public function run($speed) {
 echo “I’m running “ . $speed;
 }
 Public function eat($eatThis) {
 echo “I’m eating “ . $eatThis;
 }
 abstract public function greet();
 }

<?php
 class human extends animal
 {
 public function greet() {
 echo “Hello!”;
 }
 }

 $personA = new human();
 $personA->grret();

 class dog extends animal
 {
 public function greet() {
 echo “Bow wow!”;
 }
 }
 $dogB = new dog();
 $dogB->grret();

148

In PHP, multi inheritance is not allowed.

Multi inheritance is not allowed to avoid complexity in codes.

3-3 Polymorphism

Interface

Interface has a set of method without contents(codes), which means Interface will provide us

what this interface can do and not how this interface implements its methods.

While Abstract class can have concrete methods and abstract methods as well, Interface can

only have abstract methods.

Differences between Abstract method and Interface are;

 Interface Abstract class

Multi inheritance A class can inherit several interfaces
A class can inherit(extend) only one
abstract class

Default
implementations

A interface can’t have any codes.
An abstract class can have complete
codes and/or details that have to be
overridden,

Access modifiers
Interfaces can’t have access modifier,
always are assumed as public.

An abstract class can have access
modifier.

Fields, constants
No properties(variables) can be
defines in an interface.

An abstract class can have properties and
constants,

Interface is used to define an abstract type that contains no data or code, but defines behaviors

as method signatures.

<?php
 class engine {l
 public function start() {
 echo “engine started”;
 }
 }
 class body {
 public function setColor($color) {
 echo “body color is changed to “ . $color;
 }
 }

 class car extends engine, body {
 ……

 }

Multi inheritance is not allowed

149

Polymorphism

Polymorphism is a mechanism where classes have different functionality while they share

common interface.

Example;

[Practice 55] example of polymorphysm ex55.php

<?php
 // Shape interface, it provides only ‘getArea’ function signature
 interface Shape {
 public function getArea();
 }

 // Square class implements Shape interface
 class Square implements Shape {
 private $width;
 private $height;

 public function __construct($width, $height) {
 $this->width = $width;
 $this->height = $height;
 }

 public function getArea(){ // implementation of ‘getArea()’ for Square class
 return $this->width * $this->height;
 }
 }

 class Circle implements Shape {
 private $radius;

 public function __construct($radius) {
 $this->radius = $radius;
 }

 public function getArea(){ // implementation of ‘getArea()’ for Circle class
 return 3.14 * $this->radius * $this->radius;
 }
 }

 function calculateArea(Shape $shape) {
 return $shape->getArea();
 }

 $square = new Square(8, 6);
 $circle = new Circle(9);

 echo "Area od square is : " . calculateArea($square) , "\n";
 echo "Area od circle is : " . calculateArea($circle);

?>

150

3-4 “Program to an Interface, not to an Implementation”

‘Interface’ represents only “what”, which means “what the class can do”,
and doesn’t represent “how it will do it” , which is represented in actual
implementation.

In Practice55, of course we can code the last several lines as follows;

The above code will work, but from OOP programing manner, isn’t
recommended.

It is recommended to program to an interface, not to an implementation.

 ……..

 $square = new Square(8, 6);
 $circle = new Circle(9);

 echo "Area of square is : " . $square -> getArea() , "\n";
 echo "Area of circle is : " . $circle -> gerArea();

?>

151

MVC pattern

MVC stands for ‘Model – View – Controller’.

1. What’s ‘MVC pattern’?

MVC pattern is a software methodology or architectural pattern to separate application’s concern. It

proposes three main components or objects to be used in software development.

1-1 Model

A Model represents logical aspects of an application. It has a logic to update the current state of

the application.

1-2 View

A View represents user interface aspects of an application. It will visualize data which a Model

contains.

1-3 Controller

A Controller controls data flow into Model objects and updates View objects when data changes.

2 What’s an advantage of developing an application with ‘MVC pattern’?

In Web application development, we (software engineers) need to cooperate with web designers who

develop web page design in HTML and CSS.

When our PHP codes and designers’ HTML codes are mixed up disorderly, it may cause confusion;

designers may make changes PHP codes by mistake, or programmers may make changes HTML codes by

mistake.

To avoid such confusion, we’d better separate our tasks from designers’ tasks.

MVC pattern is one of such methodology.

3 MVC pattern process structure

In MVC pattern process, ‘Controller’ will play the main role.

‘Controller’ will get data from application user, transfer them to ‘Model’,

‘Model’ will do checking, manipulate database, generate data for ‘view’ and

return them to ‘Controller’.

‘Controller’ will transfer generated data to ‘View’, which will generate HTML for

response. ‘Controller’ will display HTML generated by ‘View’.

You can see the flow and structure of process in the next page.

PHP & Web programming (13)

152

Here we’ll make one very simple example.

Form data(POST/GET)

Response(HTML)
Controller

Model View

Database

browser

Flow and structure of MVC pattern

 Application user sends data from a ‘form’ on a browser to the application.

 In the application, ‘Controller’ receives data from browser.

 ‘Controller’ find which ‘Model’ is to be called and transfer data to ‘Model’.

 ‘Model’ do input check,

 ‘Model’ accesses database if necessary.

 ‘Model’ gets data set from database.

 ‘Model’ processes data, generate data for ‘View’ and transfer them to

 ‘Controller’.

 ‘Controller’ lets ‘View’ generate HTML to be output.

 ‘View’ generates HTML.

 ‘Controller’ responds HTML to user.

MVC pattern process scenario

[Practice 56] simple web application ex56.php

This application will have

1) A form with one dropdown list with country name.

2) We can select one country from the list and submit it.

3) Our application will search the country in the ‘nations.txt’ and

4) Show the capital city and population on the next screen.

153

Screens for this Practice are;

 (ex56.php) (ex56b.php)

First, we’ll make this application without using MVC pattern in Practice 56,

and arrange it with MVC pattern in Practice 56. (Before starting Practice 56, we need to get knowledge on

SMARTY, a PHP web template tool.

For country list, you can use ‘nations.txt’.

In this practice, we use text file, read it into drop down list. ex56.php

submit

Country name(selected)

Capital city

population

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE html>

<html xmlns="http: //www.w3.org/1999/xhtml">

<head>

 <title>Non-MVC pattern example</title>

</head>

<body>

 <form action="ex56b.php" method="POST" >

 Select country name and press ‘submit’:

 <select name=”nations” >

 <option value=””>Select ….</option>

 <?php

 $fh = fopen(“nations.txt”, “r”);

 while($line = fgets($fh)) {

 $line = explode(“,”, $line);

 echo “<option value=’” . $line[0] . “’>” . $line[0] . “</option>”;

 }

 fclose($fh);

 unset($fh);

 ?>

 </select>

 <input type="submit" value="submit" name="submit" />

 </form>

</body>

</html>

154

Function;

explode() : split a string by given strings

syntax : $result = explode(delimiter, string);

delimiter : the boundary string

string : the target string

$result : return value. An array of strings

ex)

 $target = “123,456,789”;

 $array = explode(“,”, $target);

 $array is (“123”, “456”, “789”)

 ex56b.php

Function;

array_search() : search a specified string in an array. If found, return the corresponding key. If

not found, return FALSE.

syntax : $result = array_search(target, array, [strict]);

target : the searched value. If the target is string, the comparison will be done in case-

sensitive manner.

array : The array.

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE html>

<html xmlns="http: //www.w3.org/1999/xhtml">

<head>

 <title>Non-MVC pattern example</title>

</head>

<body>

 <?php

 $arrayKey = $_POST["nations"]; // get form data

 $nations = file("nations.txt"); // read nations.txt into array

 $index = array_search($arrayKey, $nations); // search country name in array(file)

 $nation = explode(",", $nations[$index]); // split target nation in array by comma

 ?>

 You select <?php echo $nation[0]; ?>

 Capital city is <?php echo $nation[1]; ?>

 Population is <?php echo $nation[2]; ?>
</body>

</html>

155

strict : Boolean value. If True, then the comparison will be done with type and value.

Default value is FALSE.

example :

$array = (“water”, “air”, “sea”, “mountain”, “lake”);

$index = array_search(“sea”, $array);

 $index = 2

$array = (“water”, “air”, “sea”, “mountain”, “lake”);

$index = array_search(“SEA”, $array);

 $index = FALSE (the function will search in case-sensitive

 mode)

Dropdown list in HTML;

Using ‘select’ tag, we can define a dropdown list shown above.

If we select ‘Brasil’ on the list above, then $_POST or $_GET array will have an element shown

below;

 ‘nations’ => ‘5’

 ‘Brasil’ has ‘5’ as ‘value’ of ‘option’

 name of ‘select’ tag

You can define an array of nations as follows;

 $nations = (“United States”, “Mexico”, “Canada”,“Dominica”,

 “Trinidad and Tobago”, “Brasil”,“Urguay”, “Peru”,

 “Guyana”);

Then you can get the selected data by using $_POST(or $_GET);

156

$index = $_POST(“nations”);

$nation_selected = $nations[$index];

If you make two PHP program, ex56.php and ex56b.php, then you can complete Practice56.

 ex56.php

 ex56b.php

In these two programs, PHP codes and HTML are mixed in sources.

In the next step, we’ll separate PHP codes and HTML by MVC pattern.

Before starting, we need to install ‘SMARTY’, which is a template engine written in PHP and works as a tool

for ‘View’ in MVC pattern.

SMARTY installation

Copy ‘smarty-3.1.27.zip’ to your PC.

Decompress it, then you’ll see one folder ‘smarty-3.1.27’, under which you’ll see 3 folders ‘demo’,’lexer’

and ’libs’ and some files.

157

Make one folder ‘smarty’ under ‘xampp/php’ folder, and copy ‘libs’ folder to ‘xampp/php/smarty’ folder.

Set up 4 folders for Smarty under ‘xampp/php/smarty’ folder;

templates …. all template files come here

templates_c …. all compiled template objects come here

configs …. for configuration

cache …. for cache

That’s all for SMARTY installation.

When you use SMARTY in your PHP programs, you need to include(require) Smarty file and generate

Smarty object as shown below;

 Smarty-3.1.27

 Demo

 lexer

 libs

 some files

 xampp

 php

 smarty

 libs

copy

Smarty-3.1.27.zip xampp

 $pathToSmarty = “<path to smarty>”;

 require_once(‘libs/Smarty.class.php’);

 $smarty = new Smarty();

 $smarty->setTemplateDir($ pathToSmarty . ‘templates’);

 $smarty->setCompileDir($pathToSmarty . ‘templates_c’);

 $smarty->setConfigDir($pathToSmarty . ‘configs’);

 $smarty->setCacheDir($pathToSmarty . ‘cache’);

 xampp

 php

 smarty

 libs

 templates

 templates_c

 configs

 cache

xampp

158

<path to smarty> : we installed Smarty under a folder “<xamp folder>/php”. Don’t

forget to end with ‘/’(slash).

 ex) $pathToSmarty = “c:/xampp/php/”;

SMARTY templates

Smarty templates contains;

HTML tags

Smarty tags and logics inside which application contents(PHP

 variables’ value) are assigned.

Templates file has file extension ‘.tpl’.

Let’s try very simple Smarty example;

[Practice 57] simple Smarty example ex57.php

 ex57.tpl

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE html>

<html xmlns="http: //www.w3.org/1999/xhtml">

<head>

 <title>{$title}</title>

</head>

<body>

 <p>{$message}</p>

</body>

</html>

<?php

 $pathToSmarty = “<path to smarty>”;

 require_once(‘libs/Smarty.class.php’);

 $smarty = new Smarty();

 $smarty->setTemplateDir($pathToSmarty . ‘templates’);

 $smarty->setCompileDir($pathToSmarty . ‘templates_c’);

 $smarty->setConfigDir($pathToSmarty . ‘configs’);

 $smarty->setCacheDir($pathToSmarty . ‘cache’);

 $smarty->assign(“title”, “Simple Smarty example”);

 $smarty->assign(“message”, “This is a web page with smarty templates”);

 $smarty->display(‘ex57.tpl’);

 unset($smarty);

?>

 $pathToSmarty = “<path to smarty>”;

159

 HTML source

Then we can try to modify ex55.php with Smarty.

ex55.php with Smarty

There are two factors which are new for us in Smarty,

one is “How we can express loop to process an array in Smarty”.

The other is “How we can express dropdown list in Smarty”.

Loop process in Smarty

There are 2 ways to process arrays in Smarty;

section : section is used to process sequentially indexed arrays of data.

foreach : foreach is used to process associated arrays of data

{section}

Syntax : {section name=name, loop=loop, start=start

 [,step=step] [,max=max] }

 {/section}

name : name of the section

loop : array

start : index position where loop will begin to loop

step : step value that will be used to traverse the loop

max : maximum times section will loop

160

example :

 PHP program

 Smarty template

(*) iteration : a property of ‘section’ which shows index number which start from

1.

 index : also an index property but start from 0

(1) red
(2) blue
(3) green
(4) white
(5) yellow
(6) black

[Practice 58] loop process by {section} in Smarty ex58.php

Make a PHP program ‘ex57.php’ and Smarty template ‘ex58.tpl’ to process above example.

‘

 ex56.tpl

 $array = array(“red”, “blue”, “green”, “white”, yellow”, “black”);

 $smarty->assign(“colors”, $array);

 {section name=color loop=$colors}

 ({smarty.section.color.iteration}) {$colors[color]}

 {/section}

161

{foreach}

Syntax : {foreach from=from, item=item, key=key, name=name }

 {/foreach}

from : array which is currently processed

item : current element

key : variable name of the current key

name : name of foreach loop for accessing foreach

 properties

example :

 PHP program

 Smarty template

 {foreach from=$students item=student key=key}

 <hr />

 {foreach from=$student key=key item=item}

 {$key} : {$item}

 {/foreach}

 {/foreach}

id 1002
name Mike
country USA

id 1013
name Kate
country Canada

id 1163
name James
country UK

 $array = array(array(“id”=>“1002”, “name”=>“Mike”, “country”=>”USA”),

 “id”=>“1013”, “name”=>“Kate”, “country”=>”Canada”),

 “id”=>“1163”, “name”=>“James”, “country”=>”UK”));

 $smarty->assign(“students”, $array);

162

Through Practice 57 and 58, you can see that PHP codes and HTML codes are separated by using Smarty.

Let’s go back to Practice 55 and make ex55.php with Smarty.

In Practice 55, we need a dropdown list. Smarty has its own style for dropdown list, which is html_options

tag in Smarty.

Dropdown list in Smarty ;

 nations.txt

$array = (‘0’=>’United States’, ‘1’=>’Mexico’, ‘2’=>’Canada’, ….);

$smarty->assign(“nations”, $array);

{html_options}

Syntax(1) : {html_options name=name options=options selected=selected}

[Practice 59] loop process by {foreach} in Smarty ex59.php

Make a PHP program ‘ex58.php’ and Smarty template ‘ex59.tpl’ to process above example.

‘

 ex56.tpl

United States,Washington.D.C,311630000
Mexico,Mexico City,112322767
Canada,Ottawa,33573000
Dominica,Roseau,67000
Trinidad and Tobago,Port of Spain,1339000
Brasil,Brasilia,202714700
Urguay,Montevideo,3477780
Peru,Lima,29132000
Guyana,Georgetown,780000

163

name : name of <select> tag in generated HTML

options : associated array for dropdown list

selected : selected option element

example :

 PHP program

 Smarty template

Syntax(2) : {html_options name=name values=values output=output selected=selected}

name, selected : same as Syntax(1)

values : array of values of dropdown list

output : array of output on dropdown list

example :

 PHP program

 {html_options name=nations options=$nations selected=’0’}

 $array = array(‘0’=>’United States’, ‘1’=>’Mexico’, ‘2’=>’Canada’,

 ‘3’=>’Dominica’, ‘4’=>’Trinidado and Tobago’, ‘5’=>’Brasil’);

 $smarty->assign(“nations, $array);

United States

United States

Mexico

Canada

Dominica

Trinidado and Tobago

Brasil

 $array = array(‘United States’, ‘Mexico’, ’Canada’,’Dominica’,

 ’Trinidado and Tobago’, ’Brasil’);

 $smarty->assign($values, array(0,1,2,3,4));

 $smarty->assign(“nations, $array);

164

 Smarty template

Class structures for MVC pattern

We’ll place again a picture for MVC pattern flow and structure here.

The Controller can be one class.

Each screen for a web application can be one class as a Model module.

For View, Smarty template has a role as View module.

Classes for database table access will work as a part of Model module.

 {html_options name=nations output=$nations values=$values selected=’0’}

United States

Mexico

Canada

Dominica

Trinidado and Tobago

Brasil

United States

Form data(POST/GET)

Response(HTML)
Controller

Model View

Database

browser

Flow and structure of MVC pattern

165

The Controller will make instances to keep data for Model and View.

The instances (class objects) are;

 Request object : it keeps all POST/GET data from user’s browser

 Session object : it keeps all Session data

 Result object : it keeps all data for View, which can be Smarty variables

Each Model module (in other words, modules for each screen) will access tables in database through

Table object. Each table has one class for columns and behavior.

In OOP, we can say ‘Each object dispatches messages to other object’, where ‘messages’ means ‘objects’.

req

ses

res

tab

DB Controller

Model View

Database tab

req

ses

res

res

DB

tab

req

ses

res

Database connection object (static object by Singleton Pattern)

table object

Request data object

Session data object

Result data (View) object

Smarty templates

DB connection object must be common and unique among Model modules.

Singleton pattern is applied for such cases, where the class has private

constructor, which means we can’t ‘new’ this object and the class provides a

public method to return common and unique instance/object to client.

166

Practice 55 with MVC pattern : application structure is shown below

Controller

Model

View

index.php

controller.php

ex55.php

ex55b.php

ex55.tpl

ex55b.tpl

Entry point of application. All input data comes to this module. It

configures app’s environment and generates objects

call ‘controller.php’

It calls screen process programs by ‘_REQUEST’ parameter,

hands objects to the screen process and prepares output data,

calls Smarty template and lets it display next screen

It reads ‘nations.txt’ and make an array with its data.

It gets country’s name, capital city and population by the result of the

dropdown list, and set them in the result object.

View for ‘ex55’ screen

View for ‘ex55b’ screen

comfunc.php functionss commonly called by Model modules.

Request.php A class to keep POST/GET variables.

Session.php A class to keep Session variables.

Result.php A class to keep View variables for Smarty.

DefineConst.php Module to keep user defined constants .

RandomString.php Module to generate randomized strings

In this practice, it’s not used.

167

You can see some sample source files for this application.

And you’ll find PHP codes and HTML codes are separated, Smarty variables and some Smarty tags are used

to combine PHP and HTML.

This practice is very simple one, so there’s no case for branches in one screen.

If one screen can have more than one state (for example, normal case and error process, etc.), then we

need to keep ‘state’ variable in Session or in some Smarty variable on screen.(‘action’ in ex55)

As you see, there’s only one entry point on this application, that is, ‘index.php’.

All forms in this application has ‘action’ attribute with the value ‘index.php’.

We don’t need to search other module for entry point from HTML form.

In addition, all output (which is ‘next web page’) are output from only one point, which is ‘dispPage’

function in ‘Controller.php’. Any other module for screen process should not have output point for next

page.

“One entry, one exit” will save your time to search modules and make application easy to read.

One more point;

You can try another example for ‘Practice 55’,

 localhost/ex55s.php

In ‘ex55s.php’, you’ll see request and response are shown in the same window(‘ex55s.tpl’).

In this program, pay attention to the following line;

 <div style="display: {$display}; ">

Using CSS ‘display’ property, we can arrange the contents of the window, hiding result texts or showing

them. For details of CSS ‘display’ property, visit http://www.w3schools.com/css/css_display_visibility.asp

http://www.w3schools.com/css/css_display_visibility.asp

168

Development of Database access class

Here I will introduce one example of how to develop database access classes.

This is an example which I’ve developed in my career, so there must be much better way for it. You can copy

them, you can develop your own access classes based on my classes.

1. Access class structure

PHP & Web programming (14)

clsDBConn(clsDBConn.php)

DBAccess(clsDBAccess.php)

clsTableA(clsTableA.php)

clsTableB(clsTableB.php)

clsTableC(clsTableC.php)

app.conf

.

.

.

.

Inherit ‘DBAccess’ class

clsDBConn : Instance of this class will keep ‘Database connection object’.

All actions on database will be done on this object.

To avoid operation mistakes, we usually make only one object for same

database. It is realized by using ‘Singleton Pattern’ mechanism.

app.conf : A text file where application’s configuration is defined in ‘ini’ format file.

We can make use of the contents of this file not only to define configuration

of the application but also to avoid hard coding of constants in PHP sources.

169

2. Database connection class(clsDBConn.php)

By singleton pattern, there’s only one database object for the target database in the application space.

If you write only Standard SQL, then you can prepare DB connection class for several database tools like

MySQL, ORACLE, MSSQLserver and so on. You don’t need add any other module than clsDBconn with

different ‘DB connection strings’.

Database handler object

Singleton pattern
 constructor’s scope is private
 can’t ‘new’ this class from outside
 instead, getConnection() function will
 return this object

Get information from ‘app.conf’
[db]section in app.conf has
information for database connection

PDO class constructor has arguments;
 1. DB connection strings
 2. User name
 3. Password
 4. Option(if any)

clsDBAccess : This is a class for accessing to a table, it contains ‘database connection object’,

‘query(executing SQL)’ method, ‘fetch rows’ method and so on.

This class is a parent class of accessor classes for each table.

clsXxxx : One table in a database has one accessor class and each accessor class inherits

DBAccess class.

170

3. Table accessor class (clsDBAccess.php)

3-1 constructor

this executes ‘getConnection’ method of ‘clsDBConn’ class, which is static method

we don’t need to instanciate ‘cksDBConn’ class.

‘getConnection’ method will return database objet, which will be saved in a class variable ‘mDBConn’.

3-2 DBAqueryRS($sql)

This method receives SQL statement as an argument .

‘query’ method of the PDO class will execute given SQL statement and return record set(if any) as

‘Statement’ object. We can get records from ‘Statement’ object by ‘fetch’ or ‘fetchall’ method.

3-3 DBAqueryRSP($sql, $ar)

This method receives SQL statement as an argument and an array of parameters,

execute a ‘prepared query’(=’parameter query’) and return ‘statement’ object with record set.

‘prepare’ method of PDO object will return ‘statement’ object. The SQL statement must have at least

one placeholder(‘?’) in it, and actual value for placeholder must be given in an array which will be

given to ‘execute’ method of ‘statement’ object.

‘execute’ method will return true(if success) or false(if failure).

We can get records from ‘Statement’ object by ‘fetch’ or ‘fetchall’ method.

3-4 DBAquery($sql)

This method will execute SQL statement but will not return any record set.

Such SQL statements as ‘add’, ‘update’, ‘create table’ and so on may be executed by this method.

If success, return true, otherwise return false.

3-5 DBAqueryP($sql, $ar)

This method is a ‘parameter query version of DBAquery()’.

This doesn’t return record set in ‘Statement’ object.

If success, return true, otherwise return false.

If SQL statement contains user input data such as ‘add’, ‘update’ sql, you would better use this

‘DBAqueryP’ parameter query than ‘DBAquery’.

$this->mDBconn = clsDBConn::getConnection()

$this->mStmt = $this->mDBConn->query($sql)

$this->mStmt = $this->mDBConn->prepare($sql);

$this->mStmt->execute($ar));

171

3-6 DBAgetNext()

This method will get next record set.

If valid record exists, then return true and the record set will be set into ‘mRS’ as associated

array(<field name> => <field value>).

If valid record exists, mRS will get associated array of the record and return true,

otherwise return false.

 array([field_name_1] => [field_value_1],

 [field_name_2] => [field_value_2],

 ….);

3-7 abstract methods

There are 3 abstract methods in DBAccess class;

 1) ‘add’ method method to add a record(row) into a table

 2) ‘update’ method method to update a record(row)

 3) ‘delete’ method method to delete record(row)

these methods should be overridden by sub-class(child class).

4. Table accessor class for each table(clsXXXX.php)

Table accessor class for each table inherits clsDBAccess class.

4-1 table ‘country’ accessor class (clsCountry.php)

 Table ‘country’ is shown below;

1) definition of column variables is shown on the next page.

 every variable for column(field) should have ‘private’ scope and have

 ‘setter’,’getter’ methods.

Column name Data type size attribute remarks

id Int PRIMARY KEY
AUTO INCREMENT

record ID

name Varchar 128 country name

capitalcity Varchar 128 capital city

population Int UNSIGNED population

iso2 Char 2 2 digits country code

iso3 char 3 3 digits country code

$this->mRS = $this->mStmt->fetch(PDO::FETCH_ASSOC);

172

2) getAll() method

A method to get all records from table ‘country’.

Return value : true(if successful) or false(if failed)

Records can be got by ‘DBAfetch’ method or ‘DBAfetchAll’ method.

3) getByID() method

A method to get a record which matches with specified record ID.

argument : record ID

return value : true(success) or false(failure)

If successful, each field can be got by ‘getter’ method for fields.

4) getByName() method

A method to get a record which matches with specified country name.

argument : country name

return value : true(success) or false(failure)

If successful, each field can be got by ‘getter’ method for fields.

$mCountry = new clsCountry();
 .
 .
if($mCountry->getByID($id)) {
 echo “country name is “ . $mCountry->getName();
} else {
 echo “Failed to get country record “;
}

$mCountry = new clsCountry();
 .
 .
if($mCountry->getByName(‘Guyana’)) {
 echo “Capital city is “ . $mCountry->getCapital();
} else {
 echo “Failed to get country record “;
}

Variables for table columns ‘setter’ and ‘getter’ methods for each column

173

5) add() method (implementation of ‘add’ abstract method in DBAccess class)

Before calling ‘add’ method, we need to set values to column variables.

‘add’ method will issue ‘parameter query’ as shown below;

6) update() method (implementation of ‘update’ abstract method in DBAccess

 class)

Before calling ‘update’ method, we need to set values to column variables and do necessary modification.

‘update’ method will issue ‘parameter query’ as shown below;

 function add() {
 $wSql = "INSERT INTO " . $this->mTableName;
 $wSql .= " (name, capital, population, iso2, iso3) ";
 $wSql .= " VALUES (?, ?, ?, ?, ?)";
 $wAr = array($this->getName(),
 $this->getCapital(),
 $this->getPopulation(),
 $this->getISO2(),
 $this->getISO3()
);
 $wRes = $this->DBAqueryP($wSql, $wAr);
 if($wRes) {
 return true;
 } else {

 // failed：set error message
 $this->mMessage = "clsCountry:add SQL error:" .
 parent::DBAgetMessage() ." SQL:".$wSql . ":";
 return false;
 }
 }

 function update() {
 $wSql = "UPDATE ".$this->mTableName." SET ".
 " name = ?,".
 " capital = ?,".
 " population = ?,".
 " iso2 = ?,".
 " iso3 = ? "
 " WHERE id = ?";
 $wAr = array($this->getName()),
 $this->getCapital(),
 $this->getPopulation(),
 $this->getISO2(),
 $this->getISO3(),
 $this->getID()
);
 $wRes = $this->DBAqueryP($wSql, $wAr);
 if($wRes) {
 $this->message = "update successful:".$this->getName().":";
 return true;
 } else {
 $this->message = "update failed:".$this->getName().": Message:" .
 parent::DBAgetMessage();
 return false;
 } }

Place holder

parameters

Place holder

parameters

174

7) delete() method (implementation of ‘delete’ abstract method in DBAccess

 class)

Before calling ‘delete’ method, we need to get the target record.

This method will not show any confirmation alert to user, so if you need to show confirmation alert

message before deleting, you must do it yourself

in this method.

These 3 implemented methods may have same PHP codes for other tables.

After developing table accessor classes, we can access to database tables from our Model module (=

module for each screen).

5. Access to database table from modules for each screen

We define an instance variable for a table.

In the constructor of a module for a screen, make table instance by ‘new’ keyword.

Using table instace, we can access to the table in the module for a screen.

 function delete() {
 $wSql = "DELETE FROM ".$this->mTableName." WHERE id = ? ";
 $wAr = array($this->getID());
 $wRes = $this->DBAqueryP($wSql, $wAr);
 if($wRes) {
 $this->message = "Delete successful:".$this->getName().":";
 return true;
 } else {
 $this->message = "Delete failed:".$this->getName().": Message:" .
 parent::DBAgetMessage();
 return false;
 }
 }

Place holder

parameters

 private mCountry; // instance variable for table ‘country’

 function __constructor() {
 …….

 $mCountry = new clsCountry(); // make ‘country’ instance
 ……..
 }

 public function xxxxxxx() {
 …..
 $this ->mCountry->getByName($wName);
 ……

175

Final exercise

Make a web application with specification shown below;

Make a new folder ‘phptraining’ under ‘xampp/htdocs’ and programs are saved here. Specification of the

web application

1. Using ‘myDB’ database, make a table ‘person’ as follows;

No. column type length remarks

1 userID varchar Max 20 Primary key

2 password varchar Max 128 encrypted by md5()

3 name varchar Max 128

4 gender int 1 : male 2 : female

5 email varchar Max 128

6 nationality int ‘id’ in the ‘nations’ table

On ‘myDB’ database, make a table ‘country’ as follows;

No. column type length remarks

1 id int Primary key, auto increment

2 name varchar Max 128 Country name

3 capital varchar Max 128 Capital city name

4 population int

5 iso2 char 2 ISO country code(2 digits)

6 iso3 char 3 ISO country code(3 digits)

name Capital city population iso2 iso3

United States of America Washington 321793000 US USA

Mexico Mexico City 121740000 MX MEX

Canada Ottawa 35749600 CA CAN

Guyana Georgetown 746900 GY GUY

Brazil Brasilia 20487800 BR BRA

France Paris 66212000 FR FRA

Nigeria Abuja 182202000 NG NGA

PHP & Web programming (15)

sample

176

2. This is an application for ‘registration and inquiry of person’.

It has 3 screens shown below;

2-1 Log-in screen program : login.php

2-2 Registration screen program : entry.php

2-3 Inquiry screen program : inquiry.php

Your user ID :

Password :

entry

Registration / Inquiry System

Message area

user ID :

password :

Registration / Inquiry System

Message area

Registration / Inquiry System

exit

exit

exit

 user ID : xxxxxxxxxx

name : xxxxxxxxxx

gender : xxxx

email : xxxxxxxxxx

nationality : xxxxxxxx

submit

inquiry

user name dropdown list

name :

email :

nationarity :

gender : male female radio button

inquiry

inquiry

entry

177

2-4 administrator

1) We need one user for administration as follows;

userID : ‘admin’

password : ‘password’

name : ‘administrator’

gender : 1 or 2 (whichever you like)

email : your email address

nationality : 0

after setting up ‘person’ table, you need to make this user manually.

2-5 screens

1) ‘log-in’ screen

‘userID’ and ‘password’ should be matched with a record on ‘person’ table.

Take measure to guard from ‘SQL injection attack’.

After successful ‘log-in’,

 if ‘entry’ button is pressed, the next screen is ‘registration screen’,

 if ‘inquiry’ button is pressed, the next screen is ‘inquiry screen’.

 When we have more than one destination page(.php) in one form,

 we need to change the value of ‘action’ attribute in ‘form’ tag, it

 will be done by using javascript, see ‘2-6 javascript’.

If ‘exit’ is pressed, the application will quit. Don’t forget to release objects.

2) ‘registration’ screen

‘userID’ must be unique

‘userID’ can have only alphabets, numbers and underscore.

maximum length is 20 letters.

‘password’ can have any letters.

‘password’ should be saved with md5() encrypted.

md5() function will generate 32 digits of random letters.

‘email’ must be checked with legal combination of email address characters.

All fields are mandatory.

178

When ‘submit’ button is pressed, input data are checked and if no

error is detected, user record will be registered and successful message will be shown on

‘message’ area. If any error is detected, error message will be shown on ‘message’ area.

In both case, input data should be echoed back.

When ‘inquiry’ button is pressed, it will make screen transition to ‘inquiry’ screen. In

case of pressing this button, input data will be neglected.

If ‘exit’ is pressed, the application will quit. Don’t forget to release objects.

3) ‘inquiry’ screen

After selecting one name from ‘person’ dropdown list and pressing ‘inquiry’ button,

‘person’ table will be searched by the selected ‘user’.

Getting record from ‘person’ table, columns’ value are shown on the screen.

If ‘entry’ button is pressed, the next screen is ‘registration screen’,

If ‘exit’ is pressed, the application will quit. Don’t forget to release objects.

2-6 javascript

In the application, you’ll see multiple transition destinations from one form. In such cases,

we need to change ‘action’ attribute value (next PHP program) by data sent from a form.

In the form, ‘inquiry’ button will request ‘inquiry’ screen which will be processed by

‘inquiry.php’ and ‘entry’ button will request ‘entry’ screen which will be processed by

‘entry.php’.

Then, we define as follows;

 <input type=”submit” name=”submit” value=”inquiry”

 onclick=”form.action=’inquiry.php’;return true;” />

 <input type=”submit” name=”submit” value=”entry”

 onclick=”form.action=’entry.php’;return true;” />

In ‘onclick’ event, you’ll see a small javascript.

‘form’ means current form, ‘action’ is ‘action’ attribute of ‘form’ tag in HTML.

So, when ‘inquiry’ button is pressed, the ‘action’ attribute of ‘form’ tag will be changed into

‘inquiry.php’ by this javascript code.

In tis way, we can change the destination program dynamically by ‘onclick’ event and

javascript code in the definition of ‘submit’ button.

179

2-7 radio button on Smarty

Radio button on Smarty has two syntax just like dropdown list on Smarty.

{html_radios}

Syntax(1) : {html_radios name=name options=options

 selected=selected separator=separator}

name : name of <select> tag in generated HTML

options : associated array for radio buttons

selected : selected option element

separator : string or text to separate each radio button

example :

PHP program

Smarty template

Syntax(2) : {html_radios name=name value=values output=output

 selected=selected separator=separator}

name : name of <select> tag in generated HTML

 {html_radios name=fruits options=$fruits selected=’0’ separator=” “ }

 $array = array(‘0’=>’banana’, ‘1’=>’apple’, ‘2’=>’orange’,

 ‘3’=>’mango’, ‘4’=>’strawberry’, ‘5’=>’lemon’);

 $smarty->assign(“fruits”, $array);

180

values : array of values for radio buttons

output : array of output for radio buttons

selected : selected option element

separator : string or text to separate each radio button

example :

PHP program

Smarty template

3. Multiple states in one web page

In this application, there are multiple states in one page.

For example, in ‘Log-in’ page,

 1) to show page initially (all fields and message area are cleared)

 2) to echo back input data and show message

How can we identify each state?

One point is;

 if ‘subnit’ button(‘inquiry’ or ‘entry’) is posted, it is ‘echo back’ state,

 {html_radios name=fruits output=$output value=$values

 selected=’0’ separator=”
“ }

 $values = array(0, 1, 2, 3, 4, 5);

 $output = array(“banana”, “apple”, “orange”, “mango”, “strawberry”, “lemon”);

 $smarty->assign(“values”, $values);

 $smarty->assign(“output”, $output);

To arrange radio buttons vertically, set ‘separator’

attribute value to ‘
’.

181

 otherwise it’s ‘initial’ state. We can check the ‘$_POST’ array and whether it has an element of

 one of each button or not.

 <input type=”submit” name=”submit” value=”inquiry” />

 if(array_key_exists($_POST[“submit”])) { // if ‘submit’ button is pressed,

 (process for ‘echo back’ state)

After testing this application on your own PC, then we can test this application in a local network.

In GWI, we(training members) have a local IP address 192.168.101.xxx

URL strings shown below can access to ‘member A’s XAMPP web pages;

 http://192.168.101.41/phptraining/

each member can register his/her own user profile to other’s site and test others’

application on his/her own PC.

In the above case, member A is the web server, and web server can be shifted day by

day.

You can say “Today’s web server is Member C. Access to IP 192.168.101.75. Let’s

start!”.

DHCP

Member A 192.168.101.41

Member B 192.168.101.26

Member C 192.168.101.75

http://192.168.101.41/phptraining/

182

4. Some tips

4-1 To show a web page block in the middle of the browser

Using CSS and box layout, we can put our web page (box) in the middle of the browser screen.

In the CSS;

‘top: 50%;’ and ‘left: 50%;’ will place the upper left of ‘container’ at the center;

Your user ID :

Password :

entry

Registration / Inquiry System

Message area

exit inquiry

/*
 container : box for whole area
*/
#container {
 position: absolute;
 top: 50%; /* move down box top to center */
 left: 50%; /* move left side to center */
 width: 800px; /* width */
 height: 600px; /* height */
 margin-left: -400px; /* move to left by half of width */
 margin-top: -300px; /* move up by half of height */
 background-color: #efefea; /* back ground color : light blue */
}

Your user ID :

Password :

entry

Registration / Inquiry System

Message area

exit inquiry

800

600

Center of the screen

183

Next step is to move ‘container’ box to the proper position.

‘‘margin-left: -400px:’ will move the box 400px to the left.

“margin-top: -300px:’ will move the box 300px to the top.

400px and 300px means half of the vertical and horizontal size of the box. Then ‘container’ box

will come to the center of the screen.

Even when you resize browser window, the ‘container’ will keep the center position.

4-2 Layout of the boxes for this application

This ‘login’ window is made up with nested boxes shown below;

container

title

item data

item data

button blankbox button button

message

Your user ID :

Password :

entry

Registration / Inquiry System

Message area

exit inquiry

Center of the screen

datablock

buttonblock

184

Application structure for final exercise is shown below;

Controller

Model

View

index.php

controller.php

login.php

entry.php

login.tpl

entry.tpl

Entry point of application. All input data comes to this module. It

configures app’s environment and generates objects

call ‘controller.php’

It calls screen process programs by ‘_REQUEST’ parameter,

hands objects to the screen process and prepares output data,

calls Smarty template and lets it display next screen

Log-in window.

User profile registration window

View for ‘login’ window

View for ‘entry’ window

comfunc.php functions commonly used/called by Model modules.

Request.php A class to keep POST/GET variables.

Session.php A class to keep Session variables.

Result.php A class to keep View variables for Smarty.

DefineConst.php Module to keep user defined constants .

RandomString.php Module to generate randomized strings

In this practice, it’s not used.

DBconn.php A class to keep Database connection object using Singleton pattern

DBAccess.php A parent class to access to a table in a database.

An access class for each table will be inherited from this parent class.

inquiry.php User profile inquiry window

inquiry.tpl View for ‘inquiry’ window

clsPerson.php A class to access ‘person’ table. It inherits DBAccess.php’

clsCountry.php A class to access ‘country’ table. It inherits DBAccess.php’

185

Acknowledgements :

This text book was made for “PHP & Web programing training” at ICT

department in GWI(Guyana Water Incorporate) conducted by

JICA(Japan International Cooperation Agency) Senior Volunteer(ICT) in

August and September, 2015.

Special thanks to web sites shown below for valuable information and

hints;

http://www.w3schools.com/php/

http://www.w3schools.com/html/

http://www.w3schools.com/php/php_mysql_intro.asp

http://dev.mysql.com/doc/refman/5.7/en/index.html

https://www.apachefriends.org/index.html

http://php.net/manual/en/index.php

http://www.regular-expressions.info/php.html

http://www.smarty.net/

https://en.wikipedia.org/wiki/Wikipedia:WikiProject_Computer_science

In this text, I dared to avoid to refer to PHP framework tools.

It is because PHP beginners would better write PHP source codes, SQL

statements, HTML&CSS definitions for themselves to get familiar with

these language syntax. Framework tools might generate PHP codes

automatically and divide SQL statements into pieces with parameters,

which could give us high productivity but might hide basic knowledge on

these languages aside.

After having completed basic training, framework tools like cakePHP and

others would be better to use for higher productivity.

Kenichi Tezuka

September 14, 2015

http://www.w3schools.com/php/
http://www.w3schools.com/html/
http://www.w3schools.com/php/php_mysql_intro.asp
http://dev.mysql.com/doc/refman/5.7/en/index.html
https://www.apachefriends.org/index.html
http://php.net/manual/en/index.php
http://www.regular-expressions.info/php.html
http://www.smarty.net/
https://en.wikipedia.org/wiki/Wikipedia:WikiProject_Computer_science

